alpakka-kafka(1)-producer
alpakka项目是一个基于akka-streams流处理编程工具的scala/java开源项目,通过提供connector连接各种数据源并在akka-streams里进行数据处理。alpakka-kafka就是alpakka项目里的kafka-connector。对于我们来说:可以用alpakka-kafka来对接kafka,使用kafka提供的功能。或者从另外一个角度讲:alpakka-kafka就是一个用akka-streams实现kafka功能的scala开发工具。
alpakka-kafka提供了kafka的核心功能:producer、consumer,分别负责把akka-streams里的数据写入kafka及从kafka中读出数据并输入到akka-streams里。用akka-streams集成kafka的应用场景通常出现在业务集成方面:在一项业务A中产生一些业务操作指令写入kafka,然后通过kafka把指令传送给另一项业务B,业务B从kafka中获取操作指令并进行相应的业务操作。如:有两个业务模块:收货管理和库存管理,一方面收货管理向kafka写入收货记录。另一头库存管理从kafka中读取收货记录并更新相关库存数量记录。注意,这两项业务是分别操作的。在alpakka中,实际的业务操作基本就是在akka-streams里的数据处理(transform),其实是典型的CQRS模式:读写两方互不关联,写时不管受众是谁,如何使用、读者不关心谁是写方。这里的写和读两方分别代表kafka里的producer和consumer。
本篇我们先介绍alpakka-kafka的producer功能及其使用方法。如前所述:alpakka是用akka-streams实现了kafka-producer功能。alpakka提供的producer也就是akka-streams的一种组件,可以与其它的akka-streams组件组合形成更大的akka-streams个体。构建一个producer需要先完成几个配件类构成:
1、producer-settings配置:alpakka-kafka在reference.conf里的akka.kafka.producer配置段落提供了足够支持基本运作的默认producer配置。用户可以通过typesafe config配置文件操作工具来灵活调整配置
2、de/serializer序列化工具:alpakka-kafka提供了String类型的序列化/反序列化函数,可以直接使用
4、bootstrap-server:一个以逗号分隔的kafka-cluster节点ip清单文本
下面是一个具体的例子:
  implicit val system = ActorSystem("kafka_sys")
  val bootstrapServers = "localhost:9092"
  val config = system.settings.config.getConfig("akka.kafka.producer")
  val producerSettings =
    ProducerSettings(config, new StringSerializer, new StringSerializer)
      .withBootstrapServers(bootstrapServers)
这里使用ActorSystem只是为了读取.conf文件里的配置,还没有使用任何akka-streams组件。akka.kafka.producer配置段落在alpakka-kafka的reference.conf里提供了默认配置,不需要在application.conf里重新定义。
alpakka-kafka提供了一个最基本的producer,非akka-streams组件,sendProducer。下面我们示范一下sendProducer的使用和效果:
import akka.actor.ActorSystem
import akka.kafka.scaladsl.{Consumer, SendProducer}
import org.apache.kafka.clients.producer.{ProducerRecord, RecordMetadata}
import akka.kafka._
import org.apache.kafka.common.serialization._
import scala.concurrent.duration._
import scala.concurrent.{Await, Future} object SendProducerDemo extends App {
implicit val system = ActorSystem("kafka_sys")
implicit val executionContext = system.dispatcher
val bootstrapServers = "localhost:9092"
val config = system.settings.config.getConfig("akka.kafka.producer")
val producerSettings =
ProducerSettings(config, new StringSerializer, new StringSerializer)
.withBootstrapServers(bootstrapServers)
val producer = SendProducer(producerSettings)
val topic = "greatings"
val lstfut: Seq[Future[RecordMetadata]] =
(100 to 200).reverse
.map(_.toString)
.map(value => new ProducerRecord[String, String](topic, s"hello-$value"))
.map(msg => producer.send(msg)) val futlst = Future.sequence(lstfut)
Await.result(futlst, 2.seconds) scala.io.StdIn.readLine()
producer.close()
system.terminate()
}
以上示范用sendProducer向kafka写入100条hello消息。使用的是集合遍历,没有使用akka-streams的Source。为了检验具体效果,我们可以使用kafka提供的一些手工指令,如下:
\w> ./kafka-topics --create --topic greatings --bootstrap-server localhost:9092
Created topic greatings.
\w> ./kafka-console-consumer --topic greatings --bootstrap-server localhost:9092
hello-100
hello-101
hello-102
hello-103
hello-104
hello-105
hello-106
...
既然producer代表写入功能,那么在akka-streams里就是Sink或Flow组件的功能了。下面这个例子是producer Sink组件plainSink的示范:
import akka.Done
import akka.actor.ActorSystem
import akka.kafka.scaladsl._
import akka.kafka._
import akka.stream.scaladsl._
import org.apache.kafka.clients.producer.ProducerRecord
import org.apache.kafka.common.serialization._ import scala.concurrent._
import scala.concurrent.duration._ object plain_sink extends App {
implicit val system = ActorSystem("kafka_sys")
val bootstrapServers = "localhost:9092"
val config = system.settings.config.getConfig("akka.kafka.producer")
val producerSettings =
ProducerSettings(config, new StringSerializer, new StringSerializer)
.withBootstrapServers(bootstrapServers) implicit val executionContext = system.dispatcher
val topic = "greatings"
val done: Future[Done] =
Source(1 to 100)
.map(_.toString)
.map(value => new ProducerRecord[String, String](topic, s"hello-$value"))
.runWith(Producer.plainSink(producerSettings)) Await.ready(done,3.seconds) scala.io.StdIn.readLine()
system.terminate()
}
这是一个典型的akka-streams应用实例,其中Producer.plainSink就是一个akka-streams Sink组件。
以上两个示范都涉及到构建一个ProducerRecord类型并将之写入kafka。ProducerRecord是一个基本的kafka消息类型:
   public ProducerRecord(String topic, K key, V value) {
        this(topic, null, null, key, value, null);
    }
topic是String类型,key, value 是 Any 类型的。 alpakka-kafka在ProducerRecord之上又拓展了一个复杂点的消息类型ProducerMessage.Envelope类型:
sealed trait Envelope[K, V, +PassThrough] {
    def passThrough: PassThrough
    def withPassThrough[PassThrough2](value: PassThrough2): Envelope[K, V, PassThrough2]
  }
  final case class Message[K, V, +PassThrough](
      record: ProducerRecord[K, V],
      passThrough: PassThrough
  ) extends Envelope[K, V, PassThrough] {
    override def withPassThrough[PassThrough2](value: PassThrough2): Message[K, V, PassThrough2] =
      copy(passThrough = value)
  }
ProducerMessage.Envelope增加了个PassThrough参数,用来与消息一道传递额外的元数据。alpakka-kafka streams组件使用这个消息类型作为流元素,最终把它转换成一或多条ProducerRecord写入kafka。如下:
object EventMessages {
//一对一条ProducerRecord
   def createMessage[KeyType,ValueType,PassThroughType](
      topic: String,
      key: KeyType,
      value: ValueType,
      passThrough: PassThroughType): ProducerMessage.Envelope[KeyType,ValueType,PassThroughType] = {
     val single = ProducerMessage.single(
       new ProducerRecord[KeyType,ValueType](topic,key,value),
       passThrough
     )
     single
   }
//一对多条ProducerRecord
  def createMultiMessage[KeyType,ValueType,PassThroughType] (
       topics: List[String],
       key: KeyType,
       value: ValueType,
       passThrough: PassThroughType): ProducerMessage.Envelope[KeyType,ValueType,PassThroughType] = {
    import scala.collection.immutable
    val msgs = topics.map { topic =>
      new ProducerRecord(topic,key,value)
    }.toSeq
    val multi = ProducerMessage.multi(
      msgs,
      passThrough
    )
    multi
  }
//只传递通过型元数据
  def createPassThroughMessage[KeyType,ValueType,PassThroughType](
       topic: String,
       key: KeyType,
       value: ValueType,
       passThrough: PassThroughType): ProducerMessage.Envelope[KeyType,ValueType,PassThroughType] = {
    ProducerMessage.passThrough(passThrough)
  }
}
flexiFlow是一个alpakka-kafka Flow组件,流入ProducerMessage.Evelope,流出Results类型:
def flexiFlow[K, V, PassThrough](
settings: ProducerSettings[K, V]
): Flow[Envelope[K, V, PassThrough], Results[K, V, PassThrough], NotUsed] = { ... }
Results类型定义如下:
final case class Result[K, V, PassThrough] private (
metadata: RecordMetadata,
message: Message[K, V, PassThrough]
) extends Results[K, V, PassThrough] {
def offset: Long = metadata.offset()
def passThrough: PassThrough = message.passThrough
}
也就是说flexiFlow可以返回写入kafka后kafka返回的操作状态数据。我们再看看flexiFlow的使用案例:
import akka.kafka.ProducerMessage._
import akka.actor.ActorSystem
import akka.kafka.scaladsl._
import akka.kafka.{ProducerMessage, ProducerSettings}
import akka.stream.scaladsl.{Sink, Source}
import org.apache.kafka.clients.producer.ProducerRecord
import org.apache.kafka.common.serialization.StringSerializer import scala.concurrent._
import scala.concurrent.duration._ object flexi_flow extends App {
implicit val system = ActorSystem("kafka_sys")
val bootstrapServers = "localhost:9092"
val config = system.settings.config.getConfig("akka.kafka.producer")
val producerSettings =
ProducerSettings(config, new StringSerializer, new StringSerializer)
.withBootstrapServers(bootstrapServers) // needed for the future flatMap/onComplete in the end
implicit val executionContext = system.dispatcher
val topic = "greatings" val done = Source(1 to 100)
.map { number =>
val value = number.toString
EventMessages.createMessage(topic,"key",value,number)
}
.via(Producer.flexiFlow(producerSettings))
.map {
case ProducerMessage.Result(metadata, ProducerMessage.Message(record, passThrough)) =>
s"${metadata.topic}/${metadata.partition} ${metadata.offset}: ${record.value}" case ProducerMessage.MultiResult(parts, passThrough) =>
parts
.map {
case MultiResultPart(metadata, record) =>
s"${metadata.topic}/${metadata.partition} ${metadata.offset}: ${record.value}"
}
.mkString(", ") case ProducerMessage.PassThroughResult(passThrough) =>
s"passed through"
}
.runWith(Sink.foreach(println(_))) Await.ready(done,3.seconds) scala.io.StdIn.readLine()
system.terminate()
} object EventMessages {
def createMessage[KeyType,ValueType,PassThroughType](
topic: String,
key: KeyType,
value: ValueType,
passThrough: PassThroughType): ProducerMessage.Envelope[KeyType,ValueType,PassThroughType] = {
val single = ProducerMessage.single(
new ProducerRecord[KeyType,ValueType](topic,key,value),
passThrough
)
single
}
def createMultiMessage[KeyType,ValueType,PassThroughType] (
topics: List[String],
key: KeyType,
value: ValueType,
passThrough: PassThroughType): ProducerMessage.Envelope[KeyType,ValueType,PassThroughType] = {
import scala.collection.immutable
val msgs = topics.map { topic =>
new ProducerRecord(topic,key,value)
}.toSeq
val multi = ProducerMessage.multi(
msgs,
passThrough
)
multi
}
def createPassThroughMessage[KeyType,ValueType,PassThroughType](
topic: String,
key: KeyType,
value: ValueType,
passThrough: PassThroughType): ProducerMessage.Envelope[KeyType,ValueType,PassThroughType] = {
ProducerMessage.passThrough(passThrough)
} }
producer除向kafka写入与业务相关的业务事件或业务指令外还会向kafka写入当前消息读取的具体位置offset,所以alpakka-kafka的produce可分成两种类型:上面示范的plainSink, flexiFlow只向kafka写业务数据。还有一类如commitableSink还包括了把消息读取位置offset写入commit的功能。如下:
val control =
Consumer
.committableSource(consumerSettings, Subscriptions.topics(topic1, topic2))
.map { msg =>
ProducerMessage.single(
new ProducerRecord(targetTopic, msg.record.key, msg.record.value),
msg.committableOffset
)
}
.toMat(Producer.committableSink(producerSettings, committerSettings))(DrainingControl.apply)
.run() control.drainAndShutdown()
如上所示,committableSource从kafka读取业务消息及读取位置committableOffsset,然后Producer.committableSink把业务消息和offset再写入kafka。
下篇讨论我们再具体介绍consumer。
alpakka-kafka(1)-producer的更多相关文章
- 【转】 详解Kafka生产者Producer配置
		
粘贴一下这个配置,与我自己的程序做对比,看看能不能完善我的异步带代码: ----------------------------------------- 详解Kafka生产者Produce ...
 - Kafka的Producer和Consumer源码学习
		
先解释下两个概念: high watermark (HW) 它表示已经被commited的最后一个message offset(所谓commited, 应该是ISR中所有replica都已写入),HW ...
 - Kafka学习-Producer和Customer
		
在上一篇kafka入门的基础之上,本篇主要介绍Kafka的生产者和消费者. Kafka 生产者 kafka Producer发布消息记录到Kakfa集群.生产者是线程安全的,可以在多个线程之间共享生产 ...
 - Error when sending message to topic test with key: null, value: 2 bytes with error: (org.apache.kafka.clients.producer.internals.ErrorLoggingCallback)
		
windows下使用kafka遇到这个问题: Error when sending message to topic test with key: null, value: 2 bytes with ...
 - kafka 客户端 producer 配置参数
		
属性 描述 类型 默认值 bootstrap.servers 用于建立与kafka集群的连接,这个list仅仅影响用于初始化的hosts,来发现全部的servers.格式:host1:port1,ho ...
 - Kafka遇到30042ms has passed since batch creation plus linger time at org.apache.kafka.clients.producer.internals.FutureRecordMetadata.valueOrError(FutureRecordMetadata.java:94)
		
问题描述: 运行生产者线程的时候显示如下错误信息: Expiring 1 record(s) for XXX-0: 30042 ms has passed since batch creation p ...
 - 057 Java中kafka的Producer程序实现
		
1.需要启动的服务 这里启动的端口是9092. bin/kafka-console-consumer.sh --topic beifeng --zookeeper linux-hadoop01.ibe ...
 - Kafka: Producer (0.10.0.0)
		
转自:http://www.cnblogs.com/f1194361820/p/6048429.html 通过前面的架构简述,知道了Producer是用来产生消息记录,并将消息以异步的方式发送给指定的 ...
 - 【Kafka】Producer配置
		
名称 描述 类型 默认值 bootstrap.servers kafka集群地址,ip+端口,以逗号隔开.不管这边配置的是什么服务器,客户端会使用所有的服务器.配置的列表只会影响初始发现所有主机.配置 ...
 - Kafka生产者producer简要总结
		
Kafka producer在设计上要比consumer简单,不涉及复杂的组管理操作,每个producer都是独立进行工作的,与其他producer实例之间没有关联.Producer的主要功能就是向某 ...
 
随机推荐
- C++ 标准模板库(STL):vector
			
目录 1. vector 1.1 vector的定义 1.2 vector容器内元素的访问 1.3 vector 常用函数实例解析 1.4 vector的常见用途 1. vector 变长数组,长度根 ...
 - springboot中扩展ModelAndView实现net mvc的ActionResult效果
			
最近在写spring boot项目,写起来感觉有点繁琐,为了简化spring boot中的Controller开发,对ModelAndView进行简单的扩展,实现net mvc中ActionResul ...
 - Qt项目的发布
			
Qt项目的发布 (1)首先将项目调为发布版 (2)找到缺失的DLL文件 发布好了后,双击生成的exe文件可能会出现如下的问题 像这样的错误警告可能会弹出好几个,对于这种错误有2种解决方案. 第一种:配 ...
 - map详细的复习
			
map 就是一种基于自建红黑树的 一一对应的hash 的容器 通过模板方式实现 map<type,type> mapname: 前边是key 后边是 vale 转载如下作者:sevenc ...
 - easyx学习心得
			
前几天算法课的实验要求实现可视化,搞了半天没动咋实现,然后有大佬说用easyx,,,我寻思着也没教这玩意咋用啊.然后很烦躁的上网找教程,发现没有教怎么使用的,都说有一本说明书(链接),自己调用函数就可 ...
 - poj 1410 (没做出来,记得闲着没事看看这道题)
			
听说这道题是个大大的坑题 结果wa了十多发,,,,还是没找到原因 #include<cstdio> #include<cmath> #include<algorithm& ...
 - Codeforces Round #577 (Div. 2)  C. Maximum Median  (模拟,中位数)
			
题意:给你一个长度为奇数\(n\)的序列.你可以对任意元素加上\(k\)次\(1\),求操作后的中位数最大. 题解:先对序列进行排序,然后对中位数相加,如果中位数和后面的元素相等,就对后面所有和当前中 ...
 - Codeforces Round #602 Div2 D1. Optimal Subsequences (Easy Version)
			
题意:给你一个数组a,询问m次,每次返回长度为k的和最大的子序列(要求字典序最小)的pos位置上的数字. 题解:和最大的子序列很简单,排个序就行,但是题目要求字典序最小,那我们在刚开始的时候先记录每个 ...
 - 实战交付一套dubbo微服务到k8s集群(3)之二进制安装Maven
			
maven官网:https://maven.apache.org/ maven二进制下载连接:https://archive.apache.org/dist/maven/maven-3/3.6.1/b ...
 - Nginx 四层负载均衡
			
目录 四层负载均衡概述 配置七层负载均衡 配置四层负载均衡 四层负载均衡概述 四层负载均衡是基于IP+端口的负载均衡,七层负载均衡是基于URL或主机名等应用层信息的负载均衡. 其他层负载均衡(转载): ...