Lightoj 1038 - Race to 1 Again【期望+dp】
题目:戳这里
题意:一个数字n不断迭代地除以自身的因子得到1。求这个过程中操作除法次数的期望。
解题思路:
求概率基本都是从一个最基础的状态开始延伸推出公式,得出答案。
因为每个数都有个共同的最终状态1,所以我们从1向n推(注意用到期望的可加性,可加性不需要事件相互独立。
可以推出期望公式:
E=1/n * 1 + (n - 1)/n *(1 + E1 + ... + En)
Ei表示D除以一个除数后值为Di时,Di的期望。(第一道自己ac的该类型题目,记录一下
附ac代码:
1 #include <bits/stdc++.h>
2 using namespace std;
3 typedef long long ll;
4 const int maxn = 1e5 + 10;
5 const int inf = 0x3f3f3f3f;
6 const ll mod = 998244353;
7 double cnt[maxn];
8 double dp[maxn];
9 int main() {
10 int t, n;
11 dp[1] = 1.0;
12
13 for(int i = 1; i <= maxn; ++i)
14 {
15 if(cnt[i])
16 dp[i] /= cnt[i];
17 for(int j = 2; j * i <= maxn; ++j)
18 {
19 dp[i * j] += dp[i] + 1.0;
20 cnt[i * j] += 1.0;
21 }
22 }
23 scanf("%d", &t);
24 dp[1] = 0;
25 for(int cas = 1; cas <= t; ++cas)
26 {
27 scanf("%d", &n);
28 printf("Case %d: %f\n", cas, dp[n]);
29 }
30
31 return 0;
32 }
Lightoj 1038 - Race to 1 Again【期望+dp】的更多相关文章
- Lightoj 1038 - Race to 1 Again (概率DP)
题目链接: Lightoj 1038 - Race to 1 Again 题目描述: 给出一个数D,每次可以选择数D的一个因子,用数D除上这个因子得到一个新的数D,为数D变为1的操作次数的期望为多少 ...
- LightOJ - 1038 Race to 1 Again —— 期望
题目链接:https://vjudge.net/problem/LightOJ-1038 1038 - Race to 1 Again PDF (English) Statistics Foru ...
- LightOJ 1038 Race to 1 Again (概率DP,记忆化搜索)
题意:给定一个数 n,然后每次除以他的一个因数,如果除到1则结束,问期望是多少. 析:概率DP,可以用记忆公搜索来做,dp[i] = 1/m*sum(dp[j] + 1) + 1/m * (dp[i] ...
- LightOJ 1038 - Race to 1 Again(期望+DP)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1038 题意是:给你一个N (1 ≤ N ≤ 105) 每次N都随机选一个因子d,然后让 ...
- LightOJ 1038 Race to 1 Again(概率dp+期望)
https://vjudge.net/problem/LightOJ-1038 题意:给出一个数n,每次选择n的一个约数m,n=n/m,直到n=1,求次数的期望. 思路:d[i]表示将i这个数变成1的 ...
- LightOJ - 1038 Race to 1 Again 递推+期望
题目大意:给出一个数,要求你按一定的规则将这个数变成1 规则例如以下,如果该数为D,要求你在[1,D]之间选出D的因子.用D除上这个因子,然后继续按该规则运算.直到该数变成1 问变成1的期望步数是多少 ...
- lightoj 1038 Race to 1 Again
题意:给一个数,用这个数的因数除以这个数,直到为1时,求除的次数的期望. 设一个数的约数有M个,E[n] = (E[a[1]]+1)/M+(E[a[2]]+1)/M+...+(E[a[M]]+1)/M ...
- LightOJ - 1287 Where to Run (期望dp+记忆化)
题面: Last night you robbed a bank but couldn't escape and when you just got outside today, the police ...
- Race to 1 Again LightOJ - 1038
Race to 1 Again LightOJ - 1038 题意:有一个数字D,每次把D变为它的一个因数(变到所有因数的概率相等,可能是本身),变到1后停止.求对于某个初始的D变到1的期望步数. x ...
随机推荐
- 分布式系统:dubbo的连接机制
目录 研究这个问题的起因 dubbo的连接机制 为什么这么做 dubbo同步转异步 dubbo的实现 纯netty的简单实现 总结 研究这个问题的起因 起因是一次面试,一次面试某电商网站,前面问到缓存 ...
- Poj-P1088题解【动态规划/记忆化搜索】
本文为原创,转载请注明:http://www.cnblogs.com/kylewilson/ 题目出处: http://poj.org/problem?id=1088 题目描述: 区域由一个二维数组给 ...
- python元组 列表 (取值、替换、插入、添加、删除)
1.元组 列表 字典 元组( 元组是不可变的) hello = (1,2,3,4,5) type(hello)
- 使用Redis有序集合实现投票排行榜系统
https://mp.weixin.qq.com/s/GcPF8jte8Nzi4Ae0jojXuQ 先说最简单的排行榜.其实之前我们有个用于投票的系统,但是他没有用有序集合,他是这样做的:用redis ...
- 一个基于protocol buffer的RPC实现
Protocol Buffer仅仅是提供了一套序列化和反序列化结构数据的机制,本身不具有RPC功能,但是可以基于其实现一套RPC框架. Services protocol buffer的Service ...
- CSS补充2
浮动是css里面布局最多的一个属性效果:两个元素并排了,并且两个元素都能够设置宽度和高度 四个特性: 1.浮动的元素脱标 2.浮动的元素互相贴靠 3.浮动的元素有"字围"效果 4. ...
- 《进击吧!Blazor!》第一章 3.页面制作
作者介绍 陈超超Ant Design Blazor 项目贡献者拥有十多年从业经验,长期基于.Net技术栈进行架构与开发产品的工作,Ant Design Blazor 项目贡献者,现就职于正泰集团 写专 ...
- tp5项目部署Linux环境后无法访问解决
一.编辑fastcgi.conf文件 vim /www/server/nginx/conf/fastcgi.conf 二.添加代码 fastcgi_param PHP_ADMIN_VALUE &quo ...
- Java中运行javascript代码
Java中运行javascript代码 1.Java 代码 2.JS代码 2.1demoWithParams.js 2.2demoWithListParams.js 原文作者:russle 原文地址: ...
- C#脚本引擎RulesEngine
当编写应用程序时,经常性需要花费大量的时间与精力处理业务逻辑,往往业务逻辑的变化需要重构或者增加大量代码,对开发测试人员很不友好. 之前在这篇文章说过,可以使用脚本引擎来将我们需要经常变化的代码进行动 ...