推荐系统实践 0x10 Deep Crossing
这一篇,我们将介绍微软BING AD团队提出的Deep Crossing模型,用来解决大规模特征组合问题的模型,这些特征可以是稠密的,也可以是稀疏的,从而避免了人工进行特征组合,并使用了当年提出的残差神经网络。这个模型也算是深度学习在推荐系统的完整应用了:完整的解决了特征工程、稀疏向量稠密化、多层神经网络进行优化等一些列深度学习的目标应用。
特征
微软在广告场景中所使用的特征如下面所示:
- 查询。
用户在搜索框中输入的文本字符串 - 关键字
与产品相关的文本字符串,广告主添加的其产品描述词 - 标题
赞助广告的标题(简称为"广告",以下简称 "广告"),由广告主指定,以获取关注度 - 落地页
用户点击了相应的广告之后进入的页面 - 匹配类型
给广告商的一个选项,包括精准匹配、短语匹配、语义匹配等等 - 点击
显示是否有一个印象被点击用户的点击。点击通常会与运行时的其他信息一起被记录下来 - 点击率
广告的历史点击率 - 点击预测
平台的关键模式,即预测用户点击给定广告的可能性。 - 广告计划
广告主创造的投放广告的计划、包括预算、定向条件等 - 曝光样例
一个广告“曝光”的例子,记录了广告在实际曝光场景的相关信息 - 点击阳历
一个广告“点击”的例子,记录了广告在实际点击场景的相关信息
模型结构
网络的主要模型结构如下图所示

可以看出网络结构主要包括4种网络层——Embedding层,Stacking层,Multiple Residual Units层以及Scoring层。所需要的优化目标也是很常见的点击与否的二分类log损失:
\]
Embedding层
Embedding层以全连接层为主,主要目的是用来将稀疏的特征类别特征转化成稠密的Embedding向量,一般来说,Embedding向量的维度要远小于原始的洗漱特征向量。数值类型的特征不需要经过Embedding层而直接进入Stacking层。从下面的公式也能看出,所使用的激活函数是ReLU函数。
\]
Stacking层
Stacking层比较简单,将所有的Embedding向量与数值类型的特征拼接在一起,从而形成新的特征向量,该层也常被成为连接层(Concatenate)。
Multiple Residual Untis层
这个层主要大量使用了带有残差的多层感知机,也就是借鉴了ResNet的残差的思想进行优化的网络结构。通过多层残差网络对特征向量的各个维度进行充分的交叉组合,使得模型能够捕捉到更多的非线性特征以及组合特征的信息,同时残差也使得网络变得更深以及更容易优化。下图就是一个残差单元的结构:

将原始的输入和通过网络层的输出进行逐元素相加,也被称为短路(Shortcut)操作。
\]
Scoring层
Scoring层作为输出层,为了拟合优化目标存在的,如CTR预估这种二分类模型,Scoring层往往使用的逻辑回归模型,对于图像分类等多分类模型,Scoring层使用的Softmax模型。
小结
作为一个“Embedding+多层神经网络”的结构,在历史上是具有革命意义的,没有使用任何的人工特征,并且相对于FM/FFM等模型,做到了通过调整网络层数进行深度特征交叉。这也是Deep Crossing模型的名字由来。
参考
Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features
推荐系统实践 0x10 Deep Crossing的更多相关文章
- 推荐系统系列(五):Deep Crossing理论与实践
背景 特征工程是绕不开的话题,巧妙的特征组合也许能够为模型带来质的提升.但同时,特征工程耗费的资源也是相当可观的,对于后期模型特征的维护.模型线上部署不太友好.2016年,微软提出Deep Cross ...
- 协同滤波 Collaborative filtering 《推荐系统实践》 第二章
利用用户行为数据 简介: 用户在网站上最简单存在形式就是日志. 原始日志(raw log)------>会话日志(session log)-->展示日志或点击日志 用户行一般分为两种: 1 ...
- zz京东电商推荐系统实践
挺实在 今天为大家分享下京东电商推荐系统实践方面的经验,主要包括: 简介 排序模块 实时更新 召回和首轮排序 实验平台 简介 说到推荐系统,最经典的就是协同过滤,上图是一个协同过滤的例子.协同过滤主要 ...
- 推荐系统实践 0x07 基于邻域的算法(2)
基于邻域的算法(2) 上一篇我们讲了基于用户的协同过滤算法,基本流程就是寻找与目标用户兴趣相似的用户,按照他们对物品喜好的对目标用户进行推荐,其中哪些相似用户的评分要带上目标用户与相似用户的相似度作为 ...
- 推荐系统实践 0x0b 矩阵分解
前言 推荐系统实践那本书基本上就更新到上一篇了,之后的内容会把各个算法拿来当专题进行讲解.在这一篇,我们将会介绍矩阵分解这一方法.一般来说,协同过滤算法(基于用户.基于物品)会有一个比较严重的问题,那 ...
- 推荐系统实践 0x09 基于图的模型
用户行为数据的二分图表示 用户的购买行为很容易可以用二分图(二部图)来表示.并且利用图的算法进行推荐.基于邻域的模型也可以成为基于图的模型,因为基于邻域的模型都是基于图的模型的简单情况.我们可以用二元 ...
- Spark推荐系统实践
推荐系统是根据用户的行为.兴趣等特征,将用户感兴趣的信息.产品等推荐给用户的系统,它的出现主要是为了解决信息过载和用户无明确需求的问题,根据划分标准的不同,又分很多种类别: 根据目标用户的不同,可划分 ...
- 基于Neo4j的个性化Pagerank算法文章推荐系统实践
新版的Neo4j图形算法库(algo)中增加了个性化Pagerank的支持,我一直想找个有意思的应用来验证一下此算法效果.最近我看Peter Lofgren的一篇论文<高效个性化Pagerank ...
- 推荐系统实践 0x05 推荐数据集MovieLens及评测
推荐数据集MovieLens及评测 数据集简介 MoiveLens是GroupLens Research收集并发布的关于电影评分的数据集,规模也比较大,为了让我们的实验快速有效的进行,我们选取了发布于 ...
随机推荐
- webug第七关:越权
第七关:越权 观察url 将name换成admin 更改了admin的密码
- Win10 安装MySQL 5.7.32(解压版)
Win10 安装MySQL 5.7.32(解压版) MySQL 5.7.32 下载 官网下载(速度慢,不推荐使用):https://dev.mysql.com/downloads/mysql/ 清华镜 ...
- BT下载器Folx标签功能怎么实现自动的资源分类
很多经典的电影作品,比如魔戒三部曲.蜘蛛侠系列.漫威动画系列等,在一个系列中都会包含多个作品.如果使用Folx bt种子下载器自带的电影标签的话,会将这些系列电影都归为"电影"标签 ...
- guitar pro系列教程(二十三):如何使用Guitar Pro制作扫弦
前面的章节小编和大家讲解了很多关于Guitar Pro的使用功能,本章节我们将还是采用图文结合的方式和大家讲解如何使用Guitar Pro 制作扫弦,感兴趣的朋友可以进来看看哦. 扫弦的概念 对于很多 ...
- 鸿蒙OS的系统调用是如何实现的? | 解读鸿蒙源码
本文将首先带您回顾"系统调用"的概念以及它的作用,然后从经典的Hello World开始,逐行代码层层分析--鸿蒙OS的系统调用是如何实现的. 写在前面 9月10号 华为开发者大会 ...
- 「CERC2017」Donut Drone
题目链接 洛谷P4739 题目翻译: 你正在模拟无人机探索一个不稳定的环状行星的过程.技术上说,无人机正在穿过一个环形网格---一个在两维上都首尾环绕在一起的矩形网格.格子的行号从上到下依次编号为\( ...
- redis启动报错Could not connect to Redis at 127.0.0.1:6379: 由于目标计算机积极拒绝,无法连接。
报错内容 解决办法 启动redis-server服务 测试 连接成功
- C中memcpy函数用法
1.函数原型 void *memcpy(void *destin,void *source,unsigned n); 其中, destin代表用于存储复制内容的目标数组,类型强制转换为void*指针. ...
- springmvc<一> 一些特殊的Bean
Special Bean Types HandlerMapping 基于前置或后置拦截器映射请求到处理器,具体实现方式由子类决定, 两种主要的实现 ...
- moviepy用VideoFileClip加载视频时报UnicodeDecodeError: utf-8 codec cant decode byte invalid start byte错误
专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 老猿学5G博文目录 使用moviepy用: clip1 = Video ...