很容易的一道题目。大概。不过我空间计算失误MLE了 我草草的计算了一下没想到GG了。

关键的是 我学了一个dalao的空间回收的方法 但是弄巧成拙了。

题目没有明确指出 在任意时刻数组长度为有限制什么的 况且这道题也不卡空间 nlogn或者再大一倍的空间都是可以过的。

但是 我仍然作死写了两个队列 进行空间的回收 (我也不知道我在干什么。

(可能完全觉得好玩吧)

开的空间大小:\(\frac{10\cdot 30\cdot 500000\cdot 4}{1000000}=600MB\)

所以GG了。 值得一提的是考试的时候没有多想直接主席树+可持久化trie了。

其实光可持久化trie树也是可以求区间第k大和区间<=x的数的个数的。

const int MAXN=500010;
int n,m,maxx,id,ans,mark;
int a[MAXN];
int rt1[MAXN],rt2[MAXN],pos1[MAXN*20],pos2[MAXN*20];
struct wy{int l,r,sum;}t[MAXN*20];
struct jl{int c[2],sz;}s[MAXN*30];
queue<int>q1,q2;
inline int getnum1()
{
int w=q1.front();q1.pop();
l(w)=r(w)=sum(w)=0;
return w;
}
inline int getnum2()
{
int w=q2.front();q2.pop();
sz(w)=s[w].c[0]=s[w].c[1]=0;
return w;
}
inline void insert(int &p,int las,int l,int r,int x)
{
p=getnum1();pos1[p]=id;t[p]=t[las];
if(l==r){++sum(p);return;}
int mid=(l+r)>>1;
if(x<=mid)insert(l(p),l(las),l,mid,x);
else insert(r(p),r(las),mid+1,r,x);
sum(p)=sum(l(p))+sum(r(p));
}
inline void build(int &p,int las,int depth,int x)
{
p=getnum2();pos2[p]=id;s[p]=s[las];
if(!depth){++sz(p);return;}
int w=(x&(1<<(depth-1)))?1:0;
build(s[p].c[w],s[las].c[w],depth-1,x);
sz(p)=sz(s[p].c[0])+sz(s[p].c[1]);
}
inline void ask1(int p,int las,int depth,int x)
{
if(!depth)return;
int w=(x&(1<<(depth-1)))?1:0;
if(sz(s[p].c[w^1])-sz(s[las].c[w^1])>0)
{
if(w^1)ans=ans|(1<<(depth-1));
ask1(s[p].c[w^1],s[las].c[w^1],depth-1,x);
}
else
{
if(w)ans=ans|(1<<(depth-1));
ask1(s[p].c[w],s[las].c[w],depth-1,x);
}
}
inline void del1(int &p)
{
if(!p)return;
if(pos1[p]==mark)
{
del1(l(p));
del1(r(p));
q1.push(p);p=0;
}
return;
}
inline void del2(int &p)
{
if(!p)return;
if(pos2[p]==mark)
{
del2(s[p].c[0]);
del2(s[p].c[1]);
q2.push(p);p=0;
}
return;
}
inline int ask(int p,int las,int l,int r,int x)
{
if(r<=x)return sum(p)-sum(las);
int mid=(l+r)>>1;
if(x>mid)return ask(l(p),l(las),l,mid,x)+ask(r(p),r(las),mid+1,r,x);
return ask(l(p),l(las),l,mid,x);
}
inline int query(int p,int las,int l,int r,int x)
{
if(l==r)return l;
int mid=(l+r)>>1;
int ww=sum(l(p))-sum(l(las));
if(ww>=x)return query(l(p),l(las),l,mid,x);
return query(r(p),r(las),mid+1,r,x-ww);
}
int main()
{
freopen("operator.in","r",stdin);
freopen("operator.out","w",stdout);
get(m);maxx=500010;
rep(1,20*MAXN,i)q1.push(i),q2.push(i);
rep(1,m,i)
{
int op,x,y,z;
get(op)+1;get(x);
if(op==1)
{
a[++n]=x;id=n;
insert(rt1[n],rt1[n-1],1,maxx,x);
build(rt2[n],rt2[n-1],21,x);
}
if(op==2)
{
get(y);get(z);ans=0;
ask1(rt2[y],rt2[x-1],21,z);
put(ans);
}
if(op==3)
{
fep(n,n-x+1,j)
{
mark=j;
del1(rt1[j]);
del2(rt2[j]);
}
n=n-x;
}
if(op==4)
{
get(y);get(z);
put(ask(rt1[y],rt1[x-1],1,maxx,z));
}
if(op==5)
{
get(y);get(z);
put(query(rt1[y],rt1[x-1],1,maxx,z));
}
}
return 0;
}

4.24 省选模拟赛 欧珀瑞特 主席树 可持久化trie树的更多相关文章

  1. 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解

    今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...

  2. 【BZOJ2741】【FOTILE模拟赛】L 分块+可持久化Trie树

    [BZOJ2741][FOTILE模拟赛]L Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max( ...

  3. @省选模拟赛03/16 - T3@ 超级树

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 一棵 k-超级树(k-SuperTree) 可按如下方法得到:取 ...

  4. 3.28 省选模拟赛 染色 LCT+线段树

    发现和SDOI2017树点涂色差不多 但是当时这道题模拟赛的时候不会写 赛后也没及时订正 所以这场模拟赛的这道题虽然秒想到了LCT和线段树但是最终还是只是打了暴力. 痛定思痛 还是要把这道题给补了. ...

  5. NOI2019省选模拟赛 第六场

    传送门 又炸了-- \(A\) 唐时月夜 不知道改了什么东西之后就\(A\)掉了\(.jpg\) 首先,题目保证"如果一片子水域曾经被操作过,那么在之后的施法中,这片子水域也一定会被操作&q ...

  6. 省选模拟赛第四轮 B——O(n^4)->O(n^3)->O(n^2)

    一 稍微转化一下,就是找所有和原树差距不超过k的不同构树的个数 一个挺trick的想法是: 由于矩阵树定理的行列式的值是把邻接矩阵数值看做边权的图的所有生成树的边权乘积之和 那么如果把不存在于原树中的 ...

  7. NOI2019省选模拟赛 第五场

    爆炸了QAQ 传送门 \(A\) \(Mas\)的童年 这题我怎么感觉好像做过--我记得那个时候还因为没有取\(min\)结果\(100\to 0\)-- 因为是个异或我们肯定得按位考虑贡献了 把\( ...

  8. 省选模拟赛 arg

    1 arg (arg.cpp/in/out, 1s, 512MB)1.1 Description给出一个长度为 m 的序列 A, 请你求出有多少种 1...n 的排列, 满足 A 是它的一个 LIS. ...

  9. [noi.ac省选模拟赛]第10场题解集合

    题目 比赛界面. T1 不难想到,对于一个与\(k\)根棍子连接的轨道,我们可以将它拆分成\(k+1\)个点,表示这条轨道不同的\(k+1\)段. 那么,棍子就成为了点与点之间的边.可以发现,按照棍子 ...

随机推荐

  1. 嘿,java打怪升级攻略

    Java成神之路 第一层 java基础 **当你通过本层所有关卡,你可以完成一些简单的管理系统.坦克大战游戏.QQ通信等. ** 第二层 数据库 数据库类型很多例如:MySQL.oracle.redi ...

  2. 攻防世界-新手篇(Mise)~~~

    Mise this_is_flag 签到题flag{th1s_!s_a_d4m0_4la9} pdf 打开图片,flag值在图片底下,wps将pdf转为word格式后,将图片拉开发现flag flag ...

  3. Virtual DOM 真的比操作原生 DOM 快吗?

    附上尤大的回答链接链接:https://www.zhihu.com/question/31809713/answer/53544875

  4. electron自定义最小化,最大化和关闭按钮

    Electron ipcRenderer 模块 ipcRenderer 模块是一个 EventEmitter 类的实例. 它提供了有限的方法,你可以从渲染进程向主进程发送同步或异步消息. 也可以收到主 ...

  5. scala 数据结构(六):映射 Map

    1 映射 Map-基本介绍 Scala中的Map介绍 1) Scala中的Map 和Java类似,也是一个散列表,它存储的内容也是键值对(key-value)映射,Scala中不可变的Map是有序的, ...

  6. 机器学习实战基础(十七):sklearn中的数据预处理和特征工程(十)特征选择 之 Embedded嵌入法

    Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行.在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大 ...

  7. Django之实现登录随机验证码

    登录验证码是每个网站登录时的基本标配,网上也有很多相应的文章, 但是从生成验证码到 应用到自己的网站上的全步骤,并没有看到很多, 为了节约大家的时间,我把整体步骤写下来, 即拿即用哈 1. 生成随机验 ...

  8. hihoCoder 1037 数字三角形 最详细的解题报告

    题目来源:hihoCoder 1037 数字三角形 解题思路:请好好看看 提示一.提示二.提示三 具体算法(java版,可以直接AC) import java.util.Scanner; public ...

  9. day3:强制类型转换&自动类型转换&变量缓存机制

    1.Number的强制类型转换(int,float,bool,complex) 1.int 强制转换成整形 float可以转化成int bool可以转化成int str(形如"123&quo ...

  10. ADB-常见命令使用详解

    ADB命令使用详解 ADB是一个 客户端-服务器端 程序, 其中客户端是你用来操作的电脑, 服务器端是android设备. 1.连接android设置adb connect 设备名例如:adb con ...