CF 938D Buy a Ticket 题解
题目
Musicians of a popular band "Flayer" have announced that they are going to "make their exit" with a world tour. Of course, they will visit Berland as well.
There are n cities in Berland. People can travel between cities using two-directional train routes; there are exactly m routes, i-th route can be used to go from city v i to city u i (and from \(u_i\) to \(v_i\)), and it costs w i coins to use this route.
Each city will be visited by "Flayer", and the cost of the concert ticket in i-th city is a i coins.
You have friends in every city of Berland, and they, knowing about your programming skills, asked you to calculate the minimum possible number of coins they have to pay to visit the concert. For every city i you have to compute the minimum number of coins a person from city \(i\) has to spend to travel to some city \(j\) (or possibly stay in city \(i\)), attend a concert there, and return to city i (if \(j ≠ i\)).
Formally, for every \(i \in [1,n]\) you have to calculate \(min \{2*d_{i,j}\}(j \in [1, n])\) where \(d_{i, j}\) is the minimum number of coins you have to spend to travel from city \(i\) to city \(j\). If there is no way to reach city \(j\) from city \(i\), then we consider \(d_{i, j}\) to be infinitely large.
输入格式
The first line contains two integers \(n\) and \(m\) (2 ≤ n ≤ 2·10^5, 1 ≤ m ≤ 2·10^5)$.
Then \(m\) lines follow, i-th contains three integers \(v_i, u_i\) and \(w_i (1 ≤ v_i, u_i ≤ n, v_i ≠ u_i, 1 ≤ w i ≤ 10^{12})\) denoting i-th train route. There are no multiple train routes connecting the same pair of cities, that is, for each \((v, u)\) neither extra \((v, u)\) nor \((u, v)\) present in input.
The next line contains \(n\) integers \(a_1, a_2, \dots a_k (1 ≤ a_i ≤ 10^{12})\) — price to attend the concert in i-th city.
输出格式
Print n integers. i-th of them must be equal to the minimum number of coins a person from city \(i\) has to spend to travel to some city \(j\) (or possibly stay in city \(i\)), attend a concert there, and return to city \(i\) (if \(j ≠ i\)).
输入样例1
4 2
1 2 4
2 3 7
6 20 1 25
输出样例
6 14 1 25
输入样例2
3 3
1 2 1
2 3 1
1 3 1
30 10 20
输出样例2
12 10 12
代码
\(n\)个城市,\(m\)条无向边,点权\(a\), 边权\(w_{i,j}\)
对每个节点\(i\), 找出节点\(j\), 使得\(2 \times d_{i, j} + a_j\)最小, \(d_{i,j}\)表示i到j最短路径长度
乍一看像是多源最短路, 其实可以转化为单源最短路, 乘2不难处理, 关键是加上的终点点权
我们可以建立一个虚点, 把所有的点\(j\)到这个虚点建立一条边, 边权为\(a_j\)
这样, 求以这个虚点为起点, 到每个点的最短路, 就变成了单源最短路, 使用dijkstra即可
注意开long long
代码
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
struct Edge {
int v, next;
long long w;
} edges[1000000];
int head[300000], tot, vis[250000], n, m, u ,v;
long long dis[250000], a[230000], w;
void add(int x, int y, long long w) { edges[++tot] = (Edge){y, head[x], w}, head[x] = tot; }
struct node {
int id;
long long w;
bool operator<(node b) const { return w > b.w; }
};
void dijkstra(int x) {
priority_queue<node> queue;
dis[x] = 0;
queue.push((node){x, 0});
while (!queue.empty()) {
node newn = queue.top();
queue.pop();
if (vis[newn.id]) continue;
vis[newn.id] = 1;
for (int i = head[newn.id]; i; i = edges[i].next) {
int v = edges[i].v;
if (dis[v] > dis[newn.id] + edges[i].w) {
dis[v] = dis[newn.id] + edges[i].w;
queue.push((node){v, dis[v]});
}
}
}
}
int main() {
memset(dis, 0x3f, sizeof(dis));
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i++) scanf("%d%d%lld", &u, &v, &w), add(u, v, 2 * w), add(v, u, 2 * w);
for (int i = 1; i <= n; i++) scanf("%lld", &a[i]), add(0, i, a[i]);
dijkstra(0);
for (int i = 1; i <= n; i++) printf("%lld ", dis[i]);
return 0;
}
CF 938D Buy a Ticket 题解的更多相关文章
- 【最短路】CF 938D Buy a Ticket
题目大意 流行乐队"Flayer"将在\(n\)个城市开演唱会,这\(n\)个城市的人都想去听演唱会,每个城市的票价不同,于是这些人就想是否能去其他城市听演唱会更便宜,但是去其他的 ...
- Codeforces 938D Buy a Ticket
Buy a Ticket 题意要求:求出每个城市看演出的最小费用, 注意的一点就是车票要来回的. 题解:dijkstra 生成优先队列的时候直接将在本地城市看演出的费用放入队列里, 然后直接跑就好了, ...
- Codeforces 938D Buy a Ticket (转化建图 + 最短路)
题目链接 Buy a Ticket 题意 给定一个无向图.对于每个$i$ $\in$ $[1, n]$, 求$min\left\{2d(i,j) + a_{j}\right\}$ 建立超级源点$ ...
- Codeforces 938D. Buy a Ticket (最短路+建图)
<题目链接> 题目大意: 有n座城市,每一个城市都有一个听演唱会的价格,这n座城市由m条无向边连接,每天变都有其对应的边权.现在要求出每个城市的人,看一场演唱会的最小价值(总共花费的价值= ...
- 最短路 || Codeforces 938D Buy a Ticket
题意:从城市u到v(双向)要花w钱,每个城市看演唱会要花不同的门票钱,求每个城市的人要看一场演唱会花费最少多少(可以在这个城市看,也可以坐车到别的城市看,然后再坐车回来) 思路:本来以为是多源..实际 ...
- Codeforces 938D Buy a Ticket 【spfa优化】
用到了网络流的思想(大概).新建一个源点s,所有边权扩大两倍,然后所有的点向s连边权为点权的无向边,然后以s为起点跑spfa(S什么L优化的),这样每个点到s的距离就是答案. 原因的话,考虑答案应该是 ...
- Buy a Ticket,题解
题目连接 题意: 没个位置有一个点权,每个边有一个边权,求对于每个点u的min(2*d(u,v)+val[v])(v可以等于u) 分析: 我们想这样一个问题,从u到v的边权*2再加一个点权就完了,我们 ...
- Codeforces 938 D. Buy a Ticket (dijkstra 求多元最短路)
题目链接:Buy a Ticket 题意: 给出n个点m条边,每个点每条边都有各自的权值,对于每个点i,求一个任意j,使得2×d[i][j] + a[j]最小. 题解: 这题其实就是要我们求任意两点的 ...
- HDU 1133 Buy the Ticket (数学、大数阶乘)
Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
随机推荐
- java实现第六届蓝桥杯熊怪吃核桃
熊怪吃核桃 题目描述 森林里有一只熊怪,很爱吃核桃.不过它有个习惯,每次都把找到的核桃分成相等的两份,吃掉一份,留一份.如果不能等分,熊怪就会扔掉一个核桃再分.第二天再继续这个过程,直到最后剩一个核桃 ...
- Linux 用户和用户组管理-用户信息文件
用户信息文件存在在/etc/passwd中,vi /etc/passwd 其中,有七列以:分隔的信息 第一列表示用户(account),第二列表示密码标志(真正的密码存在在/etc/shadow中), ...
- ASP.NET Core 3.1 WebApi+JWT+Swagger+EntityFrameworkCore构建REST API
一.准备 使用vs2019新建ASP.NET Core Web应用程序,选用api模板: 安装相关的NuGet包: 二.编码 首先编写数据库模型: 用户表 User.cs: public class ...
- 【Java Spring Cloud 实战之路】添加一个SpringBootAdmin监控
0. 前言 在之前的几章中,我们先搭建了一个项目骨架,又搭建了一个使用nacos的gateway网关项目,网关项目中并没有配置太多的东西.现在我们就接着搭建在Spring Cloud 微服务中另一个重 ...
- Ubuntu安装protobuf步骤
1.从谷歌官网获取源码 protobuf-2.4.1.tar.gz 2.解压 tar -zxvf protobuf-2.4.1.tar.gz 3.配置 ./configure 4.编译 make 5. ...
- 使用Docker搭建Nextcloud SSL站点
1.启动mariadb docker run -d \ --name mysql \ -e MYSQL_ROOT_PASSWORD=<你的mysql密码> \ -p 13306:3306 ...
- @atcoder - AGC034F@ RNG and XOR
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个值域在 [0, 2^N) 的随机数生成器,给定参数 A[ ...
- WPF中DataTemplateSelector的简单应用
WPF中DataTemplateSelector的简单应用 DataTemplateSelector中文叫数据模板选择器,根据数据模型内的属性值选择不同的数据模板,多用于容器如listbox中,达到同 ...
- Charles抓包1-Charles安装汉化(附正版注册码)
目录 1.下载&&安装 2.汉化 1.下载&&安装 charles官网 charles下载 下载后直接安装即可. 2.汉化 下载提供的汉化包charles.jar(加群 ...
- Chrome启动选项
1. Chrome Options 这是一个Chrome的参数对象,在此对象中使用add_argument()方法可以添加启动参数,添加完毕后可以在初始化Webdriver对象时将此Options对象 ...