题目

Musicians of a popular band "Flayer" have announced that they are going to "make their exit" with a world tour. Of course, they will visit Berland as well.

There are n cities in Berland. People can travel between cities using two-directional train routes; there are exactly m routes, i-th route can be used to go from city v i to city u i (and from \(u_i\) to \(v_i\)), and it costs w i coins to use this route.

Each city will be visited by "Flayer", and the cost of the concert ticket in i-th city is a i coins.

You have friends in every city of Berland, and they, knowing about your programming skills, asked you to calculate the minimum possible number of coins they have to pay to visit the concert. For every city i you have to compute the minimum number of coins a person from city \(i\) has to spend to travel to some city \(j\) (or possibly stay in city \(i\)), attend a concert there, and return to city i (if \(j ≠ i\)).

Formally, for every \(i \in [1,n]\) you have to calculate \(min \{2*d_{i,j}\}(j \in [1, n])\) where \(d_{i, j}\) is the minimum number of coins you have to spend to travel from city \(i\) to city \(j\). If there is no way to reach city \(j\) from city \(i\), then we consider \(d_{i, j}\) to be infinitely large.

输入格式

The first line contains two integers \(n\) and \(m\) (2 ≤ n ≤ 2·10^5, 1 ≤ m ≤ 2·10^5)$.

Then \(m\) lines follow, i-th contains three integers \(v_i, u_i\) and \(w_i (1 ≤ v_i, u_i ≤ n, v_i ≠ u_i, 1 ≤ w i ≤ 10^{12})\) denoting i-th train route. There are no multiple train routes connecting the same pair of cities, that is, for each \((v, u)\) neither extra \((v, u)\) nor \((u, v)\) present in input.

The next line contains \(n\) integers \(a_1, a_2, \dots a_k (1 ≤ a_i ≤ 10^{12})\) — price to attend the concert in i-th city.

输出格式

Print n integers. i-th of them must be equal to the minimum number of coins a person from city \(i\) has to spend to travel to some city \(j\) (or possibly stay in city \(i\)), attend a concert there, and return to city \(i\) (if \(j ≠ i\)).

输入样例1

4 2
1 2 4
2 3 7
6 20 1 25

输出样例

6 14 1 25

输入样例2

3 3
1 2 1
2 3 1
1 3 1
30 10 20

输出样例2

12 10 12

代码

\(n\)个城市,\(m\)条无向边,点权\(a\), 边权\(w_{i,j}\)

对每个节点\(i\), 找出节点\(j\), 使得\(2 \times d_{i, j} + a_j\)最小, \(d_{i,j}\)表示i到j最短路径长度

乍一看像是多源最短路, 其实可以转化为单源最短路, 乘2不难处理, 关键是加上的终点点权

我们可以建立一个虚点, 把所有的点\(j\)到这个虚点建立一条边, 边权为\(a_j\)

这样, 求以这个虚点为起点, 到每个点的最短路, 就变成了单源最短路, 使用dijkstra即可

注意开long long

代码

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
struct Edge {
int v, next;
long long w;
} edges[1000000];
int head[300000], tot, vis[250000], n, m, u ,v;
long long dis[250000], a[230000], w;
void add(int x, int y, long long w) { edges[++tot] = (Edge){y, head[x], w}, head[x] = tot; }
struct node {
int id;
long long w;
bool operator<(node b) const { return w > b.w; }
};
void dijkstra(int x) {
priority_queue<node> queue;
dis[x] = 0;
queue.push((node){x, 0});
while (!queue.empty()) {
node newn = queue.top();
queue.pop();
if (vis[newn.id]) continue;
vis[newn.id] = 1;
for (int i = head[newn.id]; i; i = edges[i].next) {
int v = edges[i].v;
if (dis[v] > dis[newn.id] + edges[i].w) {
dis[v] = dis[newn.id] + edges[i].w;
queue.push((node){v, dis[v]});
}
}
}
}
int main() {
memset(dis, 0x3f, sizeof(dis));
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i++) scanf("%d%d%lld", &u, &v, &w), add(u, v, 2 * w), add(v, u, 2 * w);
for (int i = 1; i <= n; i++) scanf("%lld", &a[i]), add(0, i, a[i]);
dijkstra(0);
for (int i = 1; i <= n; i++) printf("%lld ", dis[i]);
return 0;
}

CF 938D Buy a Ticket 题解的更多相关文章

  1. 【最短路】CF 938D Buy a Ticket

    题目大意 流行乐队"Flayer"将在\(n\)个城市开演唱会,这\(n\)个城市的人都想去听演唱会,每个城市的票价不同,于是这些人就想是否能去其他城市听演唱会更便宜,但是去其他的 ...

  2. Codeforces 938D Buy a Ticket

    Buy a Ticket 题意要求:求出每个城市看演出的最小费用, 注意的一点就是车票要来回的. 题解:dijkstra 生成优先队列的时候直接将在本地城市看演出的费用放入队列里, 然后直接跑就好了, ...

  3. Codeforces 938D Buy a Ticket (转化建图 + 最短路)

    题目链接  Buy a Ticket 题意   给定一个无向图.对于每个$i$ $\in$ $[1, n]$, 求$min\left\{2d(i,j) + a_{j}\right\}$ 建立超级源点$ ...

  4. Codeforces 938D. Buy a Ticket (最短路+建图)

    <题目链接> 题目大意: 有n座城市,每一个城市都有一个听演唱会的价格,这n座城市由m条无向边连接,每天变都有其对应的边权.现在要求出每个城市的人,看一场演唱会的最小价值(总共花费的价值= ...

  5. 最短路 || Codeforces 938D Buy a Ticket

    题意:从城市u到v(双向)要花w钱,每个城市看演唱会要花不同的门票钱,求每个城市的人要看一场演唱会花费最少多少(可以在这个城市看,也可以坐车到别的城市看,然后再坐车回来) 思路:本来以为是多源..实际 ...

  6. Codeforces 938D Buy a Ticket 【spfa优化】

    用到了网络流的思想(大概).新建一个源点s,所有边权扩大两倍,然后所有的点向s连边权为点权的无向边,然后以s为起点跑spfa(S什么L优化的),这样每个点到s的距离就是答案. 原因的话,考虑答案应该是 ...

  7. Buy a Ticket,题解

    题目连接 题意: 没个位置有一个点权,每个边有一个边权,求对于每个点u的min(2*d(u,v)+val[v])(v可以等于u) 分析: 我们想这样一个问题,从u到v的边权*2再加一个点权就完了,我们 ...

  8. Codeforces 938 D. Buy a Ticket (dijkstra 求多元最短路)

    题目链接:Buy a Ticket 题意: 给出n个点m条边,每个点每条边都有各自的权值,对于每个点i,求一个任意j,使得2×d[i][j] + a[j]最小. 题解: 这题其实就是要我们求任意两点的 ...

  9. HDU 1133 Buy the Ticket (数学、大数阶乘)

    Buy the Ticket Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

随机推荐

  1. Github 创建SSH密钥克隆仓库详解

    1.登录Github主页,点击任意一个repository,点击Clone or download,点击Use SSH 2.点击add a new pulbic key,创建公钥 3.下面图中的Tit ...

  2. Python快速入门文档

    前言 此文本质为本人学习Python过程中的笔记,部分地方叙述表达可能不够清晰,欢迎留言. (本文适合有一定程序语言基础的读者阅读(最好是c语言)) 一.基本语法 1.框架: (1)以缩进表示层次所属 ...

  3. OSI七层模型及各层作用

    物理层:建立.维护.断开物理连接 数据链路层:该层的作用包括了物理地址寻址,数据的成帧,流量控制,数据的检错,重发等.该层控制网络层与物理层之间的通信,解决的是所传输数据的准确性的问题.为了保证传输, ...

  4. [源码解析] Flink的groupBy和reduce究竟做了什么

    [源码解析] Flink的groupBy和reduce究竟做了什么 目录 [源码解析] Flink的groupBy和reduce究竟做了什么 0x00 摘要 0x01 问题和概括 1.1 问题 1.2 ...

  5. akka-typed(6) - cluster:group router, cluster-load-balancing

    先谈谈akka-typed的router actor.route 分pool router, group router两类.我们先看看pool-router的使用示范: val pool = Rout ...

  6. 使用PyQtGraph绘制图形(2)

    采用addplot()方法将多个图形添加到一个窗口. 首先利用numpy模块创建两个随机数组,用来作为图形绘制的数据: import pyqtgraph as pg import numpy as n ...

  7. HashMap常问面试题整理

    去面试时,hashmap总是被经常问的问题,下面总结了几道关于hashmap的问题. 1.hashmap的主要参数都有哪些? 2.hashmap的数据结构是什么样子的?自己如何实现一个hashmap? ...

  8. matlab之指派问题(整数规划)

    1 c=[ ; ; ; ]; c=c(:);%将矩阵C按列拉直,然后赋给C,例如矩阵C=[,,;,,],操作完后就是列向量1,,,,, a=zeros(,); for i=: a(i,(i-)*+:* ...

  9. python中的importlib包

    importlib.import_module(name, package=None) 导入一个模块.参数 name 指定了以绝对或相对导入方式导入什么模块 (比如要么像这样 pkg.mod 或者这样 ...

  10. Linux切换超级管理员root用户

    Ubuntu用$标志表示你现在处于普通用户,#表示超级用户. 普通用户会有限制,想从普通变成超级用户,可以输入 su 或 su - 命令,要求你输入密码, 你如记得密码就可以直接输入,再Enter即可 ...