题目

Musicians of a popular band "Flayer" have announced that they are going to "make their exit" with a world tour. Of course, they will visit Berland as well.

There are n cities in Berland. People can travel between cities using two-directional train routes; there are exactly m routes, i-th route can be used to go from city v i to city u i (and from \(u_i\) to \(v_i\)), and it costs w i coins to use this route.

Each city will be visited by "Flayer", and the cost of the concert ticket in i-th city is a i coins.

You have friends in every city of Berland, and they, knowing about your programming skills, asked you to calculate the minimum possible number of coins they have to pay to visit the concert. For every city i you have to compute the minimum number of coins a person from city \(i\) has to spend to travel to some city \(j\) (or possibly stay in city \(i\)), attend a concert there, and return to city i (if \(j ≠ i\)).

Formally, for every \(i \in [1,n]\) you have to calculate \(min \{2*d_{i,j}\}(j \in [1, n])\) where \(d_{i, j}\) is the minimum number of coins you have to spend to travel from city \(i\) to city \(j\). If there is no way to reach city \(j\) from city \(i\), then we consider \(d_{i, j}\) to be infinitely large.

输入格式

The first line contains two integers \(n\) and \(m\) (2 ≤ n ≤ 2·10^5, 1 ≤ m ≤ 2·10^5)$.

Then \(m\) lines follow, i-th contains three integers \(v_i, u_i\) and \(w_i (1 ≤ v_i, u_i ≤ n, v_i ≠ u_i, 1 ≤ w i ≤ 10^{12})\) denoting i-th train route. There are no multiple train routes connecting the same pair of cities, that is, for each \((v, u)\) neither extra \((v, u)\) nor \((u, v)\) present in input.

The next line contains \(n\) integers \(a_1, a_2, \dots a_k (1 ≤ a_i ≤ 10^{12})\) — price to attend the concert in i-th city.

输出格式

Print n integers. i-th of them must be equal to the minimum number of coins a person from city \(i\) has to spend to travel to some city \(j\) (or possibly stay in city \(i\)), attend a concert there, and return to city \(i\) (if \(j ≠ i\)).

输入样例1

4 2
1 2 4
2 3 7
6 20 1 25

输出样例

6 14 1 25

输入样例2

3 3
1 2 1
2 3 1
1 3 1
30 10 20

输出样例2

12 10 12

代码

\(n\)个城市,\(m\)条无向边,点权\(a\), 边权\(w_{i,j}\)

对每个节点\(i\), 找出节点\(j\), 使得\(2 \times d_{i, j} + a_j\)最小, \(d_{i,j}\)表示i到j最短路径长度

乍一看像是多源最短路, 其实可以转化为单源最短路, 乘2不难处理, 关键是加上的终点点权

我们可以建立一个虚点, 把所有的点\(j\)到这个虚点建立一条边, 边权为\(a_j\)

这样, 求以这个虚点为起点, 到每个点的最短路, 就变成了单源最短路, 使用dijkstra即可

注意开long long

代码

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
struct Edge {
int v, next;
long long w;
} edges[1000000];
int head[300000], tot, vis[250000], n, m, u ,v;
long long dis[250000], a[230000], w;
void add(int x, int y, long long w) { edges[++tot] = (Edge){y, head[x], w}, head[x] = tot; }
struct node {
int id;
long long w;
bool operator<(node b) const { return w > b.w; }
};
void dijkstra(int x) {
priority_queue<node> queue;
dis[x] = 0;
queue.push((node){x, 0});
while (!queue.empty()) {
node newn = queue.top();
queue.pop();
if (vis[newn.id]) continue;
vis[newn.id] = 1;
for (int i = head[newn.id]; i; i = edges[i].next) {
int v = edges[i].v;
if (dis[v] > dis[newn.id] + edges[i].w) {
dis[v] = dis[newn.id] + edges[i].w;
queue.push((node){v, dis[v]});
}
}
}
}
int main() {
memset(dis, 0x3f, sizeof(dis));
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i++) scanf("%d%d%lld", &u, &v, &w), add(u, v, 2 * w), add(v, u, 2 * w);
for (int i = 1; i <= n; i++) scanf("%lld", &a[i]), add(0, i, a[i]);
dijkstra(0);
for (int i = 1; i <= n; i++) printf("%lld ", dis[i]);
return 0;
}

CF 938D Buy a Ticket 题解的更多相关文章

  1. 【最短路】CF 938D Buy a Ticket

    题目大意 流行乐队"Flayer"将在\(n\)个城市开演唱会,这\(n\)个城市的人都想去听演唱会,每个城市的票价不同,于是这些人就想是否能去其他城市听演唱会更便宜,但是去其他的 ...

  2. Codeforces 938D Buy a Ticket

    Buy a Ticket 题意要求:求出每个城市看演出的最小费用, 注意的一点就是车票要来回的. 题解:dijkstra 生成优先队列的时候直接将在本地城市看演出的费用放入队列里, 然后直接跑就好了, ...

  3. Codeforces 938D Buy a Ticket (转化建图 + 最短路)

    题目链接  Buy a Ticket 题意   给定一个无向图.对于每个$i$ $\in$ $[1, n]$, 求$min\left\{2d(i,j) + a_{j}\right\}$ 建立超级源点$ ...

  4. Codeforces 938D. Buy a Ticket (最短路+建图)

    <题目链接> 题目大意: 有n座城市,每一个城市都有一个听演唱会的价格,这n座城市由m条无向边连接,每天变都有其对应的边权.现在要求出每个城市的人,看一场演唱会的最小价值(总共花费的价值= ...

  5. 最短路 || Codeforces 938D Buy a Ticket

    题意:从城市u到v(双向)要花w钱,每个城市看演唱会要花不同的门票钱,求每个城市的人要看一场演唱会花费最少多少(可以在这个城市看,也可以坐车到别的城市看,然后再坐车回来) 思路:本来以为是多源..实际 ...

  6. Codeforces 938D Buy a Ticket 【spfa优化】

    用到了网络流的思想(大概).新建一个源点s,所有边权扩大两倍,然后所有的点向s连边权为点权的无向边,然后以s为起点跑spfa(S什么L优化的),这样每个点到s的距离就是答案. 原因的话,考虑答案应该是 ...

  7. Buy a Ticket,题解

    题目连接 题意: 没个位置有一个点权,每个边有一个边权,求对于每个点u的min(2*d(u,v)+val[v])(v可以等于u) 分析: 我们想这样一个问题,从u到v的边权*2再加一个点权就完了,我们 ...

  8. Codeforces 938 D. Buy a Ticket (dijkstra 求多元最短路)

    题目链接:Buy a Ticket 题意: 给出n个点m条边,每个点每条边都有各自的权值,对于每个点i,求一个任意j,使得2×d[i][j] + a[j]最小. 题解: 这题其实就是要我们求任意两点的 ...

  9. HDU 1133 Buy the Ticket (数学、大数阶乘)

    Buy the Ticket Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

随机推荐

  1. Java实现第八届蓝桥杯分巧克力

    分巧克力 题目描述 儿童节那天有K位小朋友到小明家做客.小明拿出了珍藏的巧克力招待小朋友们. 小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形. 为了公平起见,小明需要从这 N 块巧 ...

  2. sql server 连接种类

    一.连接种类 内连接 inner join 如果分步骤理解的话,内连接可以看做先对两个表进行了交叉连接后,再通过加上限制条件(SQL中通过关键字on)剔除不符合条件的行的子集,得到的结果就是内连接了. ...

  3. Linux笔记(第一天)

    一.命令 lscpu                               -- 查看cpu free                                 -- 内存查看 -m 以M ...

  4. 恕我直言,我怀疑你并不会用 Java 枚举

    开门见山地说吧,enum(枚举)是 Java 1.5 时引入的关键字,它表示一种特殊类型的类,默认继承自 java.lang.Enum. 为了证明这一点,我们来新建一个枚举 PlayerType: p ...

  5. DOM 元素的循环遍历

    ​博客地址:https://ainyi.com/89​ 获取 DOM 元素的几种方式 get 方式: getElementById getElementsByTagName getElementsBy ...

  6. MySQL连接查询驱动表被驱动表以及性能优化

    准备我们需要的表结构和数据 两张表 studnet(学生)表和score(成绩)表, 创建表的SQL语句如下 CREATE TABLE `student` ( `id` int(11) NOT NUL ...

  7. v-on事件修饰符

    .stop阻止冒泡 .prevent阻止默认行为 .capture实现捕获触发事件的机制(从大到小) .self实现只有点击当前元素时,才能出发事件处理函数 .once只触发一次事件函数 .stop和 ...

  8. Java CRC16 MODBUS校验算法实现

    /** * CRC校验算法工具类 */ public class CRCUtil { public static String getCRC(String data) { data = data.re ...

  9. spring boot admin项目的集成和开发

    Spring Boot Admin是一个Github上的一个开源项目,它在Spring Boot Actuator的基础上提供简洁的可视化WEB UI,是用来管理 Spring Boot 应用程序的一 ...

  10. python 2 与python 3区别汇总

    python 2 与python 3区别汇总 一.核心类差异1. Python3 对 Unicode 字符的原生支持.Python2 中使用 ASCII 码作为默认编码方式导致 string 有两种类 ...