RNN神经网络模型原理
1. 前言
循环神经网络(recurrent neural network)源自于1982年由Saratha Sathasivam 提出的霍普菲尔德网络。
传统的机器学习算法非常依赖于人工提取的特征,使得基于传统机器学习的图像识别、语音识别以及自然语言处理等问题存在特征提取的瓶颈。而基于全连接神经网络的方法也存在参数太多、无法利用数据中时间序列信息等问题。随着更加有效的循环神经网络结构被不断提出,循环神经网络挖掘数据中的时序信息以及语义信息的深度表达能力被充分利用,并在语音识别、语言模型、机器翻译以及时序分析等方面实现了突破。
2. RNN模型结构
循环神经网络的主要用途是处理和预测序列数据。在之前介绍的全连接神经网络或卷积神经网络模型中,网络结构都是从输入层到隐含层再到输出层,层与层之间是全连接或部分连接的,但每层之间的节点是无连接的。考虑这样一个问题,如果要预测句子的下一个单词是什么,一般需要用到当前单词以及前面的单词,因为句子中前后单词并不是独立的。比如,当前单词是“很”,前一个单词是“天空”,那么下一个单词很大概率是“蓝”。循环神经网络的来源就是为了刻画一个序列当前的输出与之前信息的关系。从网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息影响后面结点的输出。也就是说,循环神经网络的隐藏层之间的结点是有连接的,隐藏层的输入不仅包括输入层的输出,还包括上时刻隐藏层的输出。
RNN结构如下图:

上图中左边是RNN模型没有按时间展开的图,如果按时间序列展开,则是上图中的右边部分。我们重点观察右边部分的图。
这幅图描述了在序列索引号t附近RNN的模型。其中:
1、xt代表在序列索引号t时训练样本的输入。同样的,xt−1和xt+1代表在序列索引号t−1和t+1时训练样本的输入。
2、ht代表在序列索引号t时模型的隐藏状态。ht由xt和ht−1共同决定。
3、ot代表在序列索引号t时模型的输出。ot只由模型当前的隐藏状态ht决定。
4、A代表RNN模型。
3. RNN前向传播算法
最后,给出经典RNN结构的严格数学定义。
输入为x1,x2,···,xt对应的隐状态为h1,h2,···,ht
输出为y1,y2,···,yt,如,则经典RNN的运算过程可以表示为
ht=f(Uxt+Wht−1+b)
yt=softmax(Vht+c)
其中,U,W,V,b,c均为参数,而f()表示激活函数,一般为tanh函数。
4.总结
RNN虽然理论上可以很漂亮的解决序列数据的训练,但是它也像DNN一样有梯度消失时的问题,当序列很长的时候问题尤其严重。因此,上面的RNN模型一般不能直接用于应用领域。
转载于:https://www.cnblogs.com/huangyc/p/10366783.html
RNN神经网络模型原理的更多相关文章
- 1. RNN神经网络模型原理
1. RNN神经网络模型原理 2. RNN神经网络模型的不同结构 3. RNN神经网络-LSTM模型结构 1. 前言 循环神经网络(recurrent neural network)源自于1982年由 ...
- 2. RNN神经网络模型的不同结构
1. RNN神经网络模型原理 2. RNN神经网络模型的不同结构 3. RNN神经网络-LSTM模型结构 1. 前言 RNN( Recurrent Neural Network 循环(递归)神经网络) ...
- 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...
- 基于pytorch的CNN、LSTM神经网络模型调参小结
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM. ...
- 机器学习入门-BP神经网络模型及梯度下降法-2017年9月5日14:58:16
BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. B ...
- 深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化
上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效. ...
- BP神经网络模型及梯度下降法
BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. B ...
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- BP神经网络模型与学习算法
一,什么是BP "BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最 ...
随机推荐
- c++ 数字与字符串的相互转换
首先推荐用用C++的stringstream. 主要原因是操作简单. 0x00 字符串转数字 // zcj_14.cpp : //该程序是一个注册机,原理是对输入的字符每个与2求异或的结果取低位即为注 ...
- Django---进阶15
目录 文章详情页 文章点赞点踩 文章评论 文章详情页 # url设计 /username/article/1 # 先验证url是否会被其他url顶替 # 文章详情页和个人站点基本一致 所以用模版继承 ...
- Python之爬虫(二十四) 爬虫与反爬虫大战
爬虫与发爬虫的厮杀,一方为了拿到数据,一方为了防止爬虫拿到数据,谁是最后的赢家? 重新理解爬虫中的一些概念 爬虫:自动获取网站数据的程序反爬虫:使用技术手段防止爬虫程序爬取数据误伤:反爬虫技术将普通用 ...
- python爬虫学习01--电子书爬取
python爬虫学习01--电子书爬取 1.获取网页信息 import requests #导入requests库 ''' 获取网页信息 ''' if __name__ == '__main__': ...
- react中实现可拖动div
把拖动div功能用react封装成class,在页面直接引入该class即可使用. title为可拖动区域.panel为要实现拖动的容器. 优化了拖动框超出页面范围的情况,也优化了拖动太快时鼠标超出可 ...
- Ethical Hacking - NETWORK PENETRATION TESTING(11)
Securing your Network From the Above Attacks. Now that we know how to test the security of all known ...
- 小书MybatisPlus第5篇-Active Record模式精讲
本文为一个系列中的第五节,前四节访问如下地址: 小书MybatisPlus第1篇-整合SpringBoot快速开始增删改查 小书MybatisPlus第2篇-条件构造器的应用及总结 小书Mybatis ...
- smartJQueryZoom(smartZoom) 存在的兼容性BUG,以及解决方法
smartJQueryZoom 是一个很好用的库. 它基于jQuery,可以对某个元素(比如 img)进行渲染,渲染之后可以放大这个区域,在做图片浏览时很好用. 但它有一个兼容性BUG: 当浏览器不是 ...
- js JQ动态添加div标签
function renderList(data){ var str = ''; for(var i = 0; i < data.length; i++){ // 动态添加li str += ' ...
- Qt-操作xml文件
1 简介 参考视频:https://www.bilibili.com/video/BV1XW411x7AB?p=12 xml简介:可扩展标记语言,标准通用标记语言的子集,简称XML.是一种用于标记电 ...