问题

在用pytorch生成对抗网络的时候,出现错误Runtime Error: one of the variables needed for gradient computation has been modified by an inplace operation,特记录排坑记录。

环境

windows10 2004

python 3.7.4

pytorch 1.7.0 + cpu

解决过程

  • 尝试一

这段错误代码看上去不难理解,意思为:计算梯度所需的某变量已被一就地操作修改。什么是就地操作呢,举个例子如x += 1就是典型的就地操作,可将其改为y = x + 1。但很遗憾,这样并没有解决我的问题,这种方法的介绍如下。

在网上搜了很多相关博客,大多原因如下:

由于0.4.0把Varible和Tensor融合为一个Tensor,inplace操作,之前对Varible能用,但现在对Tensor,就会出错了。

所以解决方案很简单:将所有inplace操作转换为非inplace操作。如将x += 1换为y = x + 1

仍然有一个问题,即如何找到inplace操作,这里提供一个小trick:分阶段调用y.backward(),若报错,则说明这之前有问题;反之则说明错误在该行之后。

  • 尝试二

在我的代码里根本就没有找到任何inplace操作,因此上面这种方法行不通。自己盯着代码,debug,啥也看不出来,好久......

忽然有了新idea。我的训练阶段的代码如下:

for epoch in range(1, epochs + 1):
for idx, (lr, hr) in enumerate(traindata_loader):
lrs = lr.to(device)
hrs = hr.to(device) # update the discriminator
netD.zero_grad()
logits_fake = netD(netG(lrs).detach())
logits_real = netD(hrs)
# Label smoothing
real = (torch.rand(logits_real.size()) * 0.25 + 0.85).clone().detach().to(device)
fake = (torch.rand(logits_fake.size()) * 0.15).clone().detach().to(device)
d_loss = bce(logits_real, real) + bce(logits_fake, fake)
d_loss.backward(retain_graph=True)
optimizerD.step() # update the generator
netG.zero_grad()
# !!!问题出错行
g_loss = contentLoss(netG(lrs), hrs) + adversarialLoss(logits_fake)
g_loss.backward()
optimizerG.step()

判别器loss的backward是正常的,生成器loss的backward有问题。观察到g_loss由两项组成,所以很自然的想法就是删掉其中一项看是否正常。结果为:只保留第一项程序正常运行;g_loss中包含第二项程序就出错。

因此去看了adversarialLoss的代码:

class AdversarialLoss(nn.Module):
def __init__(self):
super(AdversarialLoss, self).__init__()
self.bec_loss = nn.BCELoss() def forward(self, logits_fake):
# Adversarial Loss
# !!! 问题在这,logits_fake加上detach后就可以正常运行
adversarial_loss = self.bec_loss(logits_fake, torch.ones_like(logits_fake))
return 0.001 * adversarial_loss

看不出来任何问题,只能挨个试。这里只有两个变量:logits_faketorch.ones_like(logits_fake)。后者为常量,所以试着固定logits_fake,不让其参与训练,程序竟能运行了!

class AdversarialLoss(nn.Module):
def __init__(self):
super(AdversarialLoss, self).__init__()
self.bec_loss = nn.BCELoss() def forward(self, logits_fake):
# Adversarial Loss
# !!! 问题在这,logits_fake加上detach后就可以正常运行
adversarial_loss = self.bec_loss(logits_fake.detach(), torch.ones_like(logits_fake))
return 0.001 * adversarial_loss

由此知道了被修改的变量是logits_fake。尽管程序可以运行了,但这样做不一定合理。类AdversarialLoss中没有对logits_fake进行修改,所以返回刚才的训练程序中。

for epoch in range(1, epochs + 1):
for idx, (lr, hr) in enumerate(traindata_loader):
lrs = lr.to(device)
hrs = hr.to(device) # update the discriminator
netD.zero_grad()
logits_fake = netD(netG(lrs).detach())
logits_real = netD(hrs)
# Label smoothing
real = (torch.rand(logits_real.size()) * 0.25 + 0.85).clone().detach().to(device)
fake = (torch.rand(logits_fake.size()) * 0.15).clone().detach().to(device)
d_loss = bce(logits_real, real) + bce(logits_fake, fake)
d_loss.backward(retain_graph=True)
# 这里进行的更新操作
optimizerD.step() # update the generator
netG.zero_grad()
# !!!问题出错行
g_loss = contentLoss(netG(lrs), hrs) + adversarialLoss(logits_fake)
g_loss.backward()
optimizerG.step()

注意到Discriminator在出错行之前进行了更新操作,因此真相呼之欲出————optimizerD.step()logits_fake进行了修改。直接将其挪到倒数第二行即可,修改后代码为:

for epoch in range(1, epochs + 1):
for idx, (lr, hr) in enumerate(traindata_loader):
lrs = lr.to(device)
hrs = hr.to(device) # update the discriminator
netD.zero_grad()
logits_fake = netD(netG(lrs).detach())
logits_real = netD(hrs)
# Label smoothing
real = (torch.rand(logits_real.size()) * 0.25 + 0.85).clone().detach().to(device)
fake = (torch.rand(logits_fake.size()) * 0.15).clone().detach().to(device)
d_loss = bce(logits_real, real) + bce(logits_fake, fake)
d_loss.backward(retain_graph=True) # update the generator
netG.zero_grad()
g_loss = contentLoss(netG(lrs), hrs) + adversarialLoss(logits_fake)
g_loss.backward()
optimizerD.step()
optimizerG.step()

程序终于正常运行了,耶( •̀ ω •́ )y!

总结

原因:在计算生成器网络梯度之前先对判别器进行更新,修改了某些值,导致Generator网络的梯度计算失败。

解决方法:将Discriminator的更新步骤放到Generator的梯度计算步骤后面。

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation的更多相关文章

  1. RuntimeError: one of the variables needed for gradient computation has been modified by an inplace

    vgg里面的 ReLU默认的参数inplace=True 当我们调用vgg结构的时候注意 要将inplace改成 False 不然会报错 RuntimeError: one of the variab ...

  2. one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [3, 1280, 28, 28]], which is output 0 of LeakyReluBackward1, is at version 2;

    RuntimeError: one of the variables needed for gradient computation has been modified by an inplace o ...

  3. TensorFlow 学习(八)—— 梯度计算(gradient computation)

    maxpooling 的 max 函数关于某变量的偏导也是分段的,关于它就是 1,不关于它就是 0: BP 是反向传播求关于参数的偏导,SGD 则是梯度更新,是优化算法: 1. 一个实例 relu = ...

  4. pytorch .detach() .detach_() 和 .data用于切断反向传播

    参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-autograd/#detachsource 当我们再训 ...

  5. PyTorch学习笔记及问题处理

    1.torch.nn.state_dict(): 返回一个字典,保存着module的所有状态(state). parameters和persistent_buffers都会包含在字典中,字典的key就 ...

  6. pytorch的自动求导机制 - 计算图的建立

    一.计算图简介 在pytorch的官网上,可以看到一个简单的计算图示意图, 如下. import torchfrom torch.autograd import Variable x = Variab ...

  7. [源码解析]PyTorch如何实现前向传播(2) --- 基础类(下)

    [源码解析]PyTorch如何实现前向传播(2) --- 基础类(下) 目录 [源码解析]PyTorch如何实现前向传播(2) --- 基础类(下) 0x00 摘要 0x01 前文回顾 0x02 Te ...

  8. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Gradient Checking)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In ...

  9. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking

    Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...

随机推荐

  1. Python-序列反转和序列反转协议-reversed __reversed__

    reversed 将序列反转,依次把最后的元素放到第一个位置,把第一元素放到最后一个位置,变成生成器对象 name = "beimenchuixue" print(next(rev ...

  2. 音频数据增强及python实现

    博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/13404523.html 音频时域波形具有以下特征:音调,响度,质量.我们在进行数据增强时,最好只 ...

  3. 04 sublime text 3在线安装package control插件,之后安装主题插件和ConvertToUTF8 插件

    前提:需要@@科学@@上网 在线安装包通常都需要@@科学@@上网 安装package control插件 在线安装package control插件 按ctrl+shift+p 输入install,选 ...

  4. VS2015建立一个完整的c++工程:头文件.h 源文件.cpp,自动生成类

    https://blog.csdn.net/weixin_40539125/article/details/81430801 打开VS2015 ,新建VS win32工程,前面步骤很简单,不再阐述 下 ...

  5. STM32之旅2——按键

    STM32之旅2--按键     几乎每个项目都有用到按键,为了避免以后在做大项目的时候还在琢磨按键怎么写,现在写一个,方便以后使用.这里是最简单的独立按键驱动方法,和学习51单片机是的一样,更好的方 ...

  6. [源码阅读] 阿里SOFA服务注册中心MetaServer(2)

    [源码阅读] 阿里SOFA服务注册中心MetaServer(2) 目录 [源码阅读] 阿里SOFA服务注册中心MetaServer(2) 0x00 摘要 0x01 MetaServer 注册 1.1 ...

  7. C++ 构造函数、拷贝构造函数、赋值运算符

    <C++ Primer Plus> 12.1 动态内存和类 12.1.1 复习示例和静态类成员 不能在类声明中初始化静态成员变量,这是因为声明描述了如何分配内存,但并不分配内存 如果在头文 ...

  8. k8s集群添加新得node节点

    服务端操作: 方法一: 获取master的join token kubeadm token create --print-join-command 重新加入节点 kubeadm join 192.16 ...

  9. day24 Pyhton学习 反射

    一.isinstance,type,issubclass issubclass() 这个内置函数可以帮我们判断x类是否是y类的子类 issubclass(x,y) class Base: pass c ...

  10. ES6的7个实用技巧

    Hack #1 交换元素 利用数组解构来实现值的互换 let a = 'world', b = 'hello' [a, b] = [b, a] console.log(a) // -> hell ...