LeetCode 120. Triangle (三角形最小路径和)详解
题目详情
给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
例如,给定三角形:
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
说明:
如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。
解决代码(1)—— 空间复杂度为O(N^2)
解决思路
这个题目非常明显的动态规划问题, 当前节点的最小值由前面一层的一个(当为第一个或最后一个点)或两个节点决定, 所以维护一个二维数组,保存到达每个节点的最小路径值,通过递推式求出所有的点的最小路径值,然后返回最后一层的最小值就是目标值了
//递推式可以很容易看出
//中间点
minPath[i][j] = min(minPath[i-1][j-1] + triangle[i][j], minPath[i-1][j] + triangle[i][j]);
代码及注释
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
//minPath 表示走到当前点的最小路径
vector<vector<int>> minPath = triangle;
int n = triangle.size();
for (int i = 1; i < n; i++) {
for (int j = 0; j <= i; j++) {
//当计算节点是头结点或者尾节点时,走到此节点的路径只有一个
if (j == 0) {
minPath[i][j] = minPath[i - 1][j] + triangle[i][j];
} else if (j == i) {
minPath[i][j] = minPath[i - 1][j - 1] + triangle[i][j];
} else {
//当非头尾节点的时候, 走到节点的方式有两种
minPath[i][j] = min(minPath[i-1][j-1] + triangle[i][j], minPath[i-1][j] + triangle[i][j]);
}
}
}
//返回最后一层节点的最小路径的最小值 即目标值
return *min_element(minPath[n-1].begin(), minPath[n-1].end());
}
};
解决代码(二) 空间复杂度为O(N)
解决思路
题目给了提示, 可以优化到空间为O(N)
其实不需要存所有的点, 或者说有些点用完后就不会在用了, 比如我算第三层, 那么第一层的值就用不到了, 所以我们只需维护两个个大小为N数组 保存当前层和上一层就可以优化到O(N)了!
基本想法和解法1 相同, 就不给出代码了
解决代码(三)自底向上
解法二准确来说还是用了2个数组O(2N), 是否能用一个数组来解决问题呢?
解决思路
因为上一层的每个点到下一层都有两种方式,通过反推,由最后一层一直推到第一层。
有递推式
minPath[i] = 当前点值 + min(上一层的左边点值, 上一层的右边点值)
代码如下
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle)
{
vector<int> minPath= triangle[triangle.size()-1];
for ( int i = triangle.size() - 2; i>= 0 ; --i )
for ( int j = 0; j < triangle[i].size() ; ++ j )
minPath[j] = triangle[i][j] + min(minPath[j],minPath[j+1]);
return minPath[0];
}
};
```x
LeetCode 120. Triangle (三角形最小路径和)详解的更多相关文章
- LeetCode 120. Triangle三角形最小路径和 (C++)
题目: Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjace ...
- 120 Triangle 三角形最小路径和
给出一个三角形(数据数组),找出从上往下的最小路径和.每一步只能移动到下一行中的相邻结点上.比如,给你如下三角形:[ [2], [3,4], [6,5,7], [4,1,8,3]] ...
- [算法]LeetCode 120:三角形最小路径和
题目描述: 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3]]自顶向下的最小路径和 ...
- LeetCode刷题: 【120】三角形最小路径和
1. 题目: 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小 ...
- Leetcode120.Triangle三角形最小路径和
给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径和为 11 ...
- Java实现 LeetCode 120 三角形最小路径和
120. 三角形最小路径和 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] ...
- 领扣-120 三角形最小路径和 Triangle MD
三角形最小路径和 Triangle 数组 动态规划 问题 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [2], [3,4], [6,5,7], ...
- leetcode 120. 三角形最小路径和 及 53. 最大子序和
三角形最小路径和 问题描述 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] ...
- 1. 线性DP 120. 三角形最小路径和
经典问题: 120. 三角形最小路径和 https://leetcode-cn.com/problems/triangle/ func minimumTotal(triangle [][]int) ...
随机推荐
- 【Python学习笔记七】从配置文件中读取参数
将一些需要更改或者固定的内容存放在配置文件中,通过读取配置文件来获取参数,这样修改以及使用起来比较方便 1.首先是配置文件的写法如下一个environment.ini文件: 里面“[]”存放的是sec ...
- JVM——内存区域:运行时数据区域详解
关注微信公众号:CodingTechWork,一起学习进步. 引言 我们经常会被问到一个问题是Java和C++有何区别?我们除了能回答一个是面向对象.一个是面向过程编程以外,我们还会从底层内存管理 ...
- 题解 SP1841 【PPATH - Prime Path】
模拟赛考到了这个题,但我傻傻的用了\(DFS\),于是爆了零 后来才想明白,因为搜索树的分支很多,但答案的深度却又没有那么深,所以在这里\(BFS\),而\(DFS\)一路搜到底的做法则会稳稳地\(T ...
- 利用74HC595实现的流水灯 Arduino
int big = 2; int push = 3; int datain = 4; void setup() { Serial.begin(9600); pinMode(big, OUTPUT); ...
- java基础(七)--基本类型转换
一.转换规则 1.类型转换的原则是: 小容量可以自动转成大容量,大容量转成小容量,需要强制转换,有些类型之前不能转换 判断以下语句是否符合要求 2.默认的识别数字 整数默认->int 浮点数默认 ...
- ngx lua获取时间戳的几种方式
原创自由de单车 最后发布于2017-02-14 14:58:43 阅读数 18218 收藏 在ngx_lua里,获取时间相关信息的方式大概有4种(见下面代码): print(string.forma ...
- Zookeeper集群部署及报错分析
安装 下载压缩包 解压 修改zoo.cfg文件 创建myid文件 启动 自启动配置 有时间再补hhh 报错处理 很荣幸的遇到了大部分报错,日志再zookeeper目录的bin下的zookeeper.o ...
- Fortify Audit Workbench 笔记索引
Password Management: Password in Configuration File(明文存储密码) https://www.cnblogs.com/mahongbiao/p/124 ...
- PHP key() 函数
------------恢复内容开始------------ 实例 从当前内部指针位置返回元素键名: <?php$people=array("Peter","Joe ...
- PHP defined() 函数
实例 检查某常量是否存在: <?phpdefine("GREETING","Hello you! How are you today?");echo de ...