废话不多说,直接上题:


1580:加分二叉树

时间限制: 1000 ms         内存限制: 524288 KB
提交数: 121     通过数: 91

【题目描述】

原题来自:NOIP 2003

设一个 n 个节点的二叉树 tree 的中序遍历为 (1,2,3,⋯,n),其中数字 1,2,3,⋯,n 为节点编号。每个节点都有一个分数(均为正整数),记第 i 个节点的分数为 di ,tree 及它的每个子树都有一个加分,任一棵子树 subtree(也包含 tree 本身)的加分计算方法如下:

记 subtree 的左子树加分为 l,右子树加分为 r,subtree 的根的分数为 a,则 subtree 的加分为:

l×r+a

若某个子树为空,规定其加分为 1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。

试求一棵符合中序遍历为 (1,2,3,⋯,n) 且加分最高的二叉树 tree。

要求输出:

1、tree 的最高加分;

2、tree 的前序遍历。

【输入】

第一行一个整数 n 表示节点个数;

第二行 n 个空格隔开的整数,表示各节点的分数。

【输出】

第一行一个整数,为最高加分 b;

第二行 n 个用空格隔开的整数,为该树的前序遍历。

【输入样例】

5
5 7 1 2 10

【输出样例】

145
3 1 2 4 5

【提示】

数据范围与提示:

对于 100% 的数据,n<30,b<100,结果不超过 4×109 。

【来源】

  这道题在信息奥赛一本通oj上被归类为树型动态规划,其实并不是,确实有树的数据结构要用到,但是更多需要的是区间动态规划的技巧。如果你不会区间动态规划,请戳这里学习区间动态规划

  首先,我们把这道题分成两个部分,分别是求最高加分和树的先序遍历,先来说最高加分怎么办:

  先思考一下,题目中给出的顺序(中序遍历)有什么用?中序遍历的顺序是左子树 -> 根节点 -> 右子树,那么我们不妨枚举根节点的位置,那么根节点左边的就是左子树,右边的就是右子树,然后继续在左右子树中以同样的方法枚举根节点……直到分成叶子结点,返回该节点的分数就可以了。这样是什么,这不就是递归吗?所以我们这里采用记忆化搜索的形式来写。

  那么我们就可以用f[i][j]来表示i到j区间内的最大加分,状态转移方程就很明了了:f[i][j]=max{f[i][k-1]+f[k+1][j]+a[i]}。

  不过需要注意一点,可能会出现一些越界(其实是空树)情况,例如i>j时,记得返回1。

  然后,我们来考虑怎么输出先序遍历,我们可以在执行上面的动态规划的过程中记录下一个root二维数组,root[i][j]表示i到j区间内选择的最优根节点编号,方便于输出先序遍历结果。最后只要按照先序遍历的顺序遍历就行了,碰到叶子节点时直接输出。

  好了,代码如下:

 #include<iostream>
using namespace std;
int f[][],a[],tree[],root[][],cnt,mid,n,ans;
int dp(int i,int j)//动态规划
{
if(i==j) return a[i];//碰到叶子结点直接返回
if(i>j) return ;//注意空树(不存在左子树或右子树或都不存在)的情况
if(f[i][j]) return f[i][j];//记忆化
for(int k=i;k<=j;k++)
{
int x=dp(i,k-)*dp(k+,j)+a[k];//状态转移方程
if(f[i][j]<x)
{
f[i][j]=x;
root[i][j]=k;//记录i~j区间的根节点
}
}
return f[i][j];
}
void print(int i,int j)
{
if(i>j) return;//避免空树
if(i==j)//叶节点直接输出
{
cout<<i<<" ";
return;
}
cout<<root[i][j]<<" ";//根
print(i,root[i][j]-);//左子树
print(root[i][j]+,j);//右子树
}
int main()
{
cin>>n;
for(int i=;i<=n;i++)
cin>>a[i];
cout<<dp(,n)<<endl;
print(,n);
return ;
}

【算法•日更•第十期】树型动态规划&区间动态规划:加分二叉树题解的更多相关文章

  1. 【算法•日更•第十九期】动态规划:RMQ问题

    ▎前言 首先先来说一下RMB是什么,当然是人民币啦. 今天我们要学的这个东西不一般,叫做RMQ问题,那么它和RMB有什么关系呢?待小编细细说来. ▎前置技能:动态规划 不会的同志请戳这里迅速了解动态规 ...

  2. 【算法•日更•第二十八期】图论:强连通+Tarjan算法(一)

    ▎前言 一直都想学习这个东西,以为很难,结果发现也不过如此. 只要会些图论的基础就可以了. ▎强连通 ☞『定义』 既然叫强连通,那么一定具有很强的连通性. 强连通:就是指在一个有向图中,两个顶点可以互 ...

  3. 【算法•日更•第十二期】信息奥赛一本通1585:【例 1】Amount of Degrees题解

    废话不多说,直接上题: 1585: [例 1]Amount of Degrees 时间限制: 1000 ms         内存限制: 524288 KB提交数: 130     通过数: 68 [ ...

  4. 【算法•日更•第六期】头脑风暴:洛谷P1528 切蛋糕题解

    ▎(一个没有用处的)前言 为什么这次题解特意写明题号呢?因为我发现了这样的事情: 所以不要混了,想看P1714题解的同志们可以圆润的滚开了. 好了,不说没用的了,切入正题: ▎题目 题目及测评链接:戳 ...

  5. 【算法•日更•第二十三期】数据结构:two-pointer(尺取法)&莫队

    ▎引入 ☞『例题』 一道十分easy的题: 洛谷P1638 长度为n的序列,m种数 找一个最短区间,使得所有数出现一遍 n≤1e6 ,m≤2e3. ☞『分析』 这道题非常的简单,但是如果不会two-p ...

  6. 【算法•日更•第二十七期】基础python

    ▎前言 看到这个题目,你一定会很好奇,为什么学打NOIP的要学习python?其实python对我们是很有用的! NOIP虽然不支持使用python提交代码,但是在NOILinux上天生自带pytho ...

  7. 【算法•日更•第五十四期】知识扫盲:什么是operator?

    ▎前言 这个东西和迭代器长的很像,但是比迭代器常见的多. 今天就来浅谈operator. ▎定义 operator是C#.C++和pascal的关键字,它和运算符一起使用,表示一个运算符函数,理解时应 ...

  8. 【算法•日更•第三十九期】迭代加深搜索:洛谷SP7579 YOKOF - Power Calculus 题解

    废话不多说,直接上题: SP7579 YOKOF - Power Calculus 题意翻译 (略过没有营养的题干) 题目大意: 给出正整数n,若只能使用乘法或除法,输出使x经过运算(自己乘或除自己, ...

  9. 【算法•日更•第三十五期】FF算法优化:EK算法

    ▎写在前面 FF算法传送门 之前我们已经学过了FF算法(全称Ford-Fulkerson算法)来找最大流,但是这种算法仍有诸多不对的地方. 其实这种算法存在着严重的效率的问题,请看下面的图: 以这个图 ...

随机推荐

  1. ES的集群原理

    文章转载自:https://www.cnblogs.com/soft2018/p/10213266.html 一.ES集群原理 查看集群健康状况:URL+ /GET _cat/health (1).E ...

  2. JVM系列之:String.intern和stringTable

    目录 简介 intern简介 intern和字符串字面量常量 分析intern返回的String对象 分析实际的问题 G1中的去重功能 总结 简介 StringTable是什么?它和String.in ...

  3. python学习之路------你想要的都在这里了

    python学习之路------你想要的都在这里了 (根据自己的学习进度后期不断更新哟!!!) 一.python基础 1.python基础--python基本知识.七大数据类型等 2.python基础 ...

  4. LQB2017A02跳蚱蜢

    为什么第二题就这么难呜呜呜,这不是为难我吗!!! 可以明确的是,又是一个bfs 最少路径,找满足条件的那个层数 #include<iostream> #include<stdio.h ...

  5. JVM详解之:汇编角度理解本地变量的生命周期

    目录 简介 本地变量的生命周期 举例说明 优化的原因 总结 简介 java方法中定义的变量,它的生命周期是什么样的呢?是不是一定要等到方法结束,这个创建的对象才会被回收呢? 带着这个问题我们来看一下今 ...

  6. PHP serialize() 函数

    serialize() 函数用于序列化对象或数组,并返回一个字符串.高佣联盟 www.cgewang.com serialize() 函数序列化对象后,可以很方便的将它传递给其他需要它的地方,且其类型 ...

  7. bzoj 2125 最短路 点双 圆方树

    LINK:最短路 一张仙人掌图 求图中两点最短路. \(n<=10000,Q<=10000,w>=1\) 考虑边数是多少 m>=n-1 对于一张仙人掌图 考虑先构建出来dfs树 ...

  8. 郭超:阿里云Cassandra背后的故事

    大家好,我是阿里云数据库产品事业部的玄陵,真名郭超. ​ 本次的分享大概分三个部分:Cassandra云数据库简介.Cassandra云数据库特性以及Q&A. ​ 我们先了解一下Cassand ...

  9. Linux用C语言模拟‘ls‘命令

    原理 在linux下使用C语言,通过调用Linux系统的目录访问API来实现一个类似于ls命令功能的小程序,主要是可以练习程序对命令的解析和目录API函数的使用. 实现代码 #include < ...

  10. 用 Python 制作关不掉的端午安康弹窗

    端午节又称端阳节.龙舟节.重午节.龙节.正阳节.天中节等,端午节源自天象崇拜,由上古时代祭龙演变而来,因传说战国时期的楚国诗人屈原在五月五日跳汨罗江自尽,后来人们亦将端午节作为纪念屈原的节日,在端午节 ...