将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情。tf里面提供模型保存的是tf.train.Saver()模块。

模型保存,先要创建一个Saver对象:如

saver=tf.train.Saver()

在创建这个Saver对象的时候,有一个参数我们经常会用到,就是 max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型。如果你想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置为None或者0,如:

saver=tf.train.Saver(max_to_keep=0)

但是这样做除了多占用硬盘,并没有实际多大的用处,因此不推荐。

当然,如果你只想保存最后一代的模型,则只需要将max_to_keep设置为1即可,即

saver=tf.train.Saver(max_to_keep=1)

创建完saver对象后,就可以保存训练好的模型了,如:

saver.save(sess,'ckpt/mnist.ckpt',global_step=step)

第一个参数sess,这个就不用说了。第二个参数设定保存的路径和名字,第三个参数将训练的次数作为后缀加入到模型名字中。

saver.save(sess, 'my-model', global_step=0) ==>      filename: 'my-model-0'
...
saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-model-1000'

看一个mnist实例:

# -*- coding: utf-8 -*-
"""
Created on Sun Jun 4 10:29:48 2017 @author: Administrator
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False) x = tf.placeholder(tf.float32, [None, 784])
y_=tf.placeholder(tf.int32,[None,]) dense1 = tf.layers.dense(inputs=x,
units=1024,
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.nn.l2_loss)
dense2= tf.layers.dense(inputs=dense1,
units=512,
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.nn.l2_loss)
logits= tf.layers.dense(inputs=dense2,
units=10,
activation=None,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.nn.l2_loss) loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)
train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer()) saver=tf.train.Saver(max_to_keep=1)
for i in range(100):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
sess.close()

代码中红色部分就是保存模型的代码,虽然我在每训练完一代的时候,都进行了保存,但后一次保存的模型会覆盖前一次的,最终只会保存最后一次。因此我们可以节省时间,将保存代码放到循环之外(仅适用max_to_keep=1,否则还是需要放在循环内).

在实验中,最后一代可能并不是验证精度最高的一代,因此我们并不想默认保存最后一代,而是想保存验证精度最高的一代,则加个中间变量和判断语句就可以了。

saver=tf.train.Saver(max_to_keep=1)
max_acc=0
for i in range(100):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
if val_acc>max_acc:
max_acc=val_acc
saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
sess.close()

如果我们想保存验证精度最高的三代,且把每次的验证精度也随之保存下来,则我们可以生成一个txt文件用于保存。

saver=tf.train.Saver(max_to_keep=3)
max_acc=0
f=open('ckpt/acc.txt','w')
for i in range(100):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
f.write(str(i+1)+', val_acc: '+str(val_acc)+'\n')
if val_acc>max_acc:
max_acc=val_acc
saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
f.close()
sess.close()

模型的恢复用的是restore()函数,它需要两个参数restore(sess, save_path),save_path指的是保存的模型路径。我们可以使用tf.train.latest_checkpoint()来自动获取最后一次保存的模型。如:

model_file=tf.train.latest_checkpoint('ckpt/')
saver.restore(sess,model_file)

则程序后半段代码我们可以改为:

sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer()) is_train=False
saver=tf.train.Saver(max_to_keep=3) #训练阶段
if is_train:
max_acc=0
f=open('ckpt/acc.txt','w')
for i in range(100):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
f.write(str(i+1)+', val_acc: '+str(val_acc)+'\n')
if val_acc>max_acc:
max_acc=val_acc
saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
f.close() #验证阶段
else:
model_file=tf.train.latest_checkpoint('ckpt/')
saver.restore(sess,model_file)
val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print('val_loss:%f, val_acc:%f'%(val_loss,val_acc))
sess.close()

标红的地方,就是与保存、恢复模型相关的代码。用一个bool型变量is_train来控制训练和验证两个阶段。

整个源程序:

# -*- coding: utf-8 -*-
"""
Created on Sun Jun 4 10:29:48 2017 @author: Administrator
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False) x = tf.placeholder(tf.float32, [None, 784])
y_=tf.placeholder(tf.int32,[None,]) dense1 = tf.layers.dense(inputs=x,
units=1024,
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.nn.l2_loss)
dense2= tf.layers.dense(inputs=dense1,
units=512,
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.nn.l2_loss)
logits= tf.layers.dense(inputs=dense2,
units=10,
activation=None,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.nn.l2_loss) loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)
train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess=tf.InteractiveSession()
sess.run(tf.global_variables_initializer()) is_train=True
saver=tf.train.Saver(max_to_keep=3) #训练阶段
if is_train:
max_acc=0
f=open('ckpt/acc.txt','w')
for i in range(100):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
f.write(str(i+1)+', val_acc: '+str(val_acc)+'\n')
if val_acc>max_acc:
max_acc=val_acc
saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
f.close() #验证阶段
else:
model_file=tf.train.latest_checkpoint('ckpt/')
saver.restore(sess,model_file)
val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print('val_loss:%f, val_acc:%f'%(val_loss,val_acc))
sess.close()

参考文章:http://blog.csdn.net/u011500062/article/details/51728830

 
 
 

tensorflow 1.0 学习:模型的保存与恢复的更多相关文章

  1. tensorflow 1.0 学习:模型的保存与恢复(Saver)

    将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...

  2. [翻译] Tensorflow模型的保存与恢复

    翻译自:http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ ...

  3. tensorflow模型的保存与恢复

    1.tensorflow中模型的保存 创建tf.train.saver,使用saver进行保存: saver = tf.train.Saver() saver.save(sess, './traine ...

  4. TensorFlow笔记-模型的保存,恢复,实现线性回归

    模型的保存 tf.train.Saver(var_list=None,max_to_keep=5) •var_list:指定将要保存和还原的变量.它可以作为一个 dict或一个列表传递. •max_t ...

  5. tensorflow模型的保存与恢复,以及ckpt到pb的转化

    转自 https://www.cnblogs.com/zerotoinfinity/p/10242849.html 一.模型的保存 使用tensorflow训练模型的过程中,需要适时对模型进行保存,以 ...

  6. tensorflow 1.0 学习:用CNN进行图像分类

    tensorflow升级到1.0之后,增加了一些高级模块: 如tf.layers, tf.metrics, 和tf.losses,使得代码稍微有些简化. 任务:花卉分类 版本:tensorflow 1 ...

  7. tensorflow 1.0 学习:用别人训练好的模型来进行图像分类

    谷歌在大型图像数据库ImageNet上训练好了一个Inception-v3模型,这个模型我们可以直接用来进来图像分类. 下载地址:https://storage.googleapis.com/down ...

  8. tensorflow 1.0 学习:十图详解tensorflow数据读取机制

    本文转自:https://zhuanlan.zhihu.com/p/27238630 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找 ...

  9. Tensorflow Learning1 模型的保存和恢复

    CKPT->pb Demo 解析 tensor name 和 node name 的区别 Pb 的恢复 CKPT->pb tensorflow的模型保存有两种形式: 1. ckpt:可以恢 ...

随机推荐

  1. 伸展树(splay tree)

    伸展树的设计思路,鉴于数据访问的局部性(28原则)在实际应用中普遍存在,将按照"最常用者优先"的启发策略.尽管在最坏情况下其单次操作需要 O(n) 时间,但分摊而言仍然 O(log ...

  2. 忙里偷闲( ˇˍˇ )闲里偷学【C语言篇】——(6)动态内存分配

    一.传统数组的缺点: 1.数组的长度必须事先定制,且只能是常整数,不能是变量 int len = 5; int a[len]; //error 2.传统形式定义的数组,该程序的内存程序员无法手动释放 ...

  3. Kinect 摄像头范围介绍和玩家舒适距离实测

    本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接: http://blog.csdn.net/cartzhang/article/details/44588097 作者:ca ...

  4. Qt 连接MySQL数据库(很多相关文章)

    今天想试试Qt如何连接数据库的. 谁知怎么写完了提示driver not loaded我就郁闷了. 我自己是 VS2010 + Qt4.8.4 + MySQL5.1 的环境 网上查到是 C:\Qt\4 ...

  5. 高CPU、数据库无法读写

    高CPU.数据库无法读写的真凶   有兴趣的同学可以参考如下系列文章,都是针对dump分析的实战和总结: Windbg DUMP分析(原创汇总) http://www.cnblogs.com/Love ...

  6. HDOJ 1261 字串数

    JAVA大数.... 字串数 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  7. Python应用库大全总结

    学python,想必大家都是从爬虫开始的吧.毕竟网上类似的资源很丰富,开源项目也非常多. python学习网络爬虫主要分3个大的版块:抓取,分析,存储 当我们在浏览器中输入一个url后回车,后台会发生 ...

  8. Android studio怎么创建Android虚拟机?

    进行Android studio中进行开发app应用的情况,如果在进行调式app的应用的情况下,没有真机手机机器是没有办法调式的,那么只能通过Android studio中sdk提供虚拟机进行调式ap ...

  9. linux下仅仅有rman备份集的异机不同文件夹恢复

    昨天在客户那里做了一次rman异机的恢复,把生产库弄一份给測试库用,总库大概80G,总共花费了2个小时,当时客户的环境是windows 11.2.0.3,今天早晨在linux下又一次測试了一下,记录下 ...

  10. wxWidgets初学者导引(2)——下载、安装wxWidgets

    wxWidgets初学者导引全目录   PDF版及附件下载 1 前言2 下载.安装wxWidgets3 wxWidgets应用程序初体验4 wxWidgets学习资料及利用方法指导5 用wxSmith ...