NOIP2009 最优贸易(BFS)
本题正解是tarjan。我没有去写
之前的代码是错误的不好意思,因为数据太弱一直没有发现。
相同还是两遍bfs,一次正向,一次反向。在正向的时候我们求出从起点走到各个点的最小值。在反向的时候求出从终点走向起点的最大值。
这样一来,便能够知道对于每个点i。在1到n的路径上面,经过的最大值是多少。经过的最小值是多少。最后max(mx[i]-mp[i])就是要求的答案。
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#define MAXN 100005
using namespace std;
struct T
{
int v;
int next;
}edge[500005],edge2[500005];
int cnt,cnt2;
int head[MAXN],head2[MAXN];
void add_edge(int u,int v)
{
edge[cnt].v = v;
edge[cnt].next = head[u];
head[u] = cnt++;
}
void add_edge2(int u,int v)
{
edge2[cnt2].v = v;
edge2[cnt2].next = head2[u];
head2[u] = cnt2++;
}
int mx[MAXN],mp[MAXN],w[MAXN];
bool able[MAXN],vis[MAXN];
int n,m;
void bfs1()
{
memset(mp,0x3f,sizeof mp);
queue<int> myque;
myque.push(1);
vis[1] = 1;
while(!myque.empty())
{
int u = myque.front();
vis[u] = 0;
myque.pop();
mp[u] = min(mp[u],w[u]);
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].v;
if(mp[v] > mp[u])
{
mp[v] = mp[u];
if(!vis[v])
{
vis[v] = 1;
myque.push(v);
}
}
}
}
}
void bfs2()
{
memset(mx,0,sizeof mx);
queue<int> myque;
myque.push(n);
able[n] = 1;
while(!myque.empty())
{
int u = myque.front();
able[u] = 0;
myque.pop();
mx[u] = max(mx[u],w[u]);
for(int i = head2[u]; i != -1; i = edge2[i].next)
{
int v = edge2[i].v;
if(mx[v] < mx[u])
{
mx[v] = mx[u];
if(!able[v])
{
able[v] = 1;
myque.push(v);
}
}
}
}
}
int main()
{
memset(head,-1,sizeof head);
memset(head2,-1,sizeof head2);
scanf("%d%d",&n,&m);
for(int i = 1; i <= n; i++)
scanf("%d",&w[i]);
for(int i = 1; i <= m; i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add_edge(x,y);
add_edge2(y,x);
if(z == 2)
{
add_edge(y,x);
add_edge2(x,y);
}
}
bfs2();//反向,找n到i路径上的最大值
bfs1();//正向,找1到i路径上的最小值
int ans = 0;
for(int i = 1; i <= n; i++)
ans = max(ans,mx[i]-mp[i]);
printf("%d\n",ans);
return 0;
}
/*4 3
10 10 1 10
1 2 1
2 4 1
3 2 1 */
NOIP2009 最优贸易(BFS)的更多相关文章
- [Luogu 1073] NOIP2009 最优贸易
[Luogu 1073] NOIP2009 最优贸易 分层图,跑最长路. 真不是我恋旧,是我写的 Dijkstra 求不出正确的最长路,我才铤而走险写 SPFA 的- #include <alg ...
- [NOIP2009]最优贸易(图论)
[NOIP2009]最优贸易 题目描述 CC 国有 \(n\) 个大城市和 \(m\) 条道路,每条道路连接这 \(n\) 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 \(m\ ...
- NOIP2009 最优贸易
3. 最优贸易 (trade.pas/c/cpp) [问题描述] C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间 多只有一条道路直接相连.这 m 条道 ...
- 【洛谷P1073】[NOIP2009]最优贸易
最优贸易 题目链接 看题解后感觉分层图好像非常NB巧妙 建三层n个点的图,每层图对应的边相连,权值为0 即从一个城市到另一个城市,不进行交易的收益为0 第一层的点连向第二层对应的点的边权为-w[i], ...
- [luogu1073 Noip2009] 最优贸易 (dp || SPFA+分层图)
传送门 Description C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分 为 ...
- NOIP2009最优贸易[spfa变形|tarjan 缩点 DP]
题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...
- noip2009最优贸易
试题描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双 ...
- 洛谷1073 NOIP2009 最优贸易
题目大意 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双 ...
- noip2009最优贸易(水晶球)
题目:http://codevs.cn/problem/1173/ https://www.luogu.org/problemnew/show/P1073 本来考虑缩点什么的,后来发现不用. 只要记录 ...
随机推荐
- bzoj1002: [FJOI2007]轮状病毒(基尔霍夫矩阵)
1002: [FJOI2007]轮状病毒 题目:传送门 题解: 决定开始板刷的第一题... 看到这题的时候想:这不就是求有多少种最小生成树的方式吗? 不会啊!!!%题解... 什么鬼?基尔霍夫矩阵?? ...
- ES聚合底层机制-bucket深的话采用广度优先更好,而如果是年度统计还是深度优先好
见原文,仅仅摘录部分:https://www.elastic.co/guide/cn/elasticsearch/guide/current/_preventing_combinatorial_exp ...
- sklearn.preprocessing OneHotEncoder——仅仅是数值型字段才可以,如果是字符类型字段则不能直接搞定
>>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() > ...
- django 笔记6 Ajax
感谢alex~ .Django请求生命周期 输入url 进入 urls(路由系统) 指向 views(视图函数)->(获取模板) 里面的函数 再由函数返回字符串给用户 .路由系统 /index/ ...
- Tuple assignment
It is often useful to swap the values of two variables. With conventional assignments, you have to u ...
- Android 两步搞定Fragment的返回键
Fragment可以说是在Android开发必需要使用到技术,项目中的界面基本上都是使用Fragment来实现,而Activity只是作为Fragment的载体,但有些特殊情况下Fragment也不得 ...
- iOS单例创建的一点疑惑
线程安全的单例常用写法, +(AccountManager *)sharedManager{ static AccountManager *defaultManager = nil; disptch_ ...
- 学习优化《机器学习与优化》中文PDF+英文PDF
正在学习机器学习中的优化处理,感觉<机器学习与优化>写得还是比较通俗易懂的,第七章特征选择我需要,特征提取:相关系数,相关比,熵和互信息..更高级的应该是文本挖掘的特征提取,比如LDA提取 ...
- Vue和vue-template-compiler版本之间的问题
今天把远程仓库拉下项目,运行'npm run dev'时,报错 Module build failed: Error: Cannot find module 'vue-template-compile ...
- PKI 信息安全三大特性
[机密性]发送方 接收方明文 M ...