KD树——k=1时就是BST,里面的数学原理还是有不明白的地方,为啥方差划分?
Kd-Tree,即K-dimensional tree,是一棵二叉树,树中存储的是一些K维数据。在一个K维数据集合上构建一棵Kd-Tree代表了对该K维数据集合构成的K维空间的一个划分,即树中的每个结点就对应了一个K维的超矩形区域(Hyperrectangle)。
在介绍Kd-tree的相关算法前,我们先回顾一下二叉查找树(Binary Search Tree)的相关概念和算法。k=1就是BST!
例如,图1中是一棵二叉查找树,其满足BST的性质。
图1 二叉查找树(来源:Wiki)
KD树的构建
kd树构建的伪代码如下图所示(伪代码来自《图像局部不变特性特征与描述》王永明 王贵锦 编著):
再举一个简单直观的实例来介绍k-d树构建算法。假设有6个二维数据点{(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},数据点位于二维空间内,如下图所示。为了能有效的找到最近邻,k-d树采用分而治之的思想,即将整个空间划分为几个小部分,首先,粗黑线将空间一分为二,然后在两个子空间中,细黑直线又将整个空间划分为四部分,最后虚黑直线将这四部分进一步划分。
6个二维数据点{(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)}构建kd树的具体步骤为:
- 确定:split域=x。具体是:6个数据点在x,y维度上的数据方差分别为39,28.63,所以在x轴上方差更大,故split域值为x;
- 确定:Node-data = (7,2)。具体是:根据x维上的值将数据排序,6个数据的中值(所谓中值,即中间大小的值)为7,所以Node-data域位数据点(7,2)。这样,该节点的分割超平面就是通过(7,2)并垂直于:split=x轴的直线x=7;
- 确定:左子空间和右子空间。具体是:分割超平面x=7将整个空间分为两部分:x<=7的部分为左子空间,包含3个节点={(2,3),(5,4),(4,7)};另一部分为右子空间,包含2个节点={(9,6),(8,1)};
与此同时,经过对上面所示的空间划分之后,我们可以看出,点(7,2)可以为根结点,从根结点出发的两条红粗斜线指向的(5,4)和(9,6)则为根结点的左右子结点,而(2,3),(4,7)则为(5,4)的左右孩子(通过两条细红斜线相连),最后,(8,1)为(9,6)的左孩子(通过细红斜线相连)。如此,便形成了下面这样一棵k-d树:
问题1: 每次对子空间的划分时,怎样确定在哪个维度上进行划分?
最简单的方法就是轮着来,即如果这次选择了在第i维上进行数据划分,那下一次就在第j(j≠i)维上进行划分,例如:j = (i mod k) + 1。想象一下我们切豆腐时,先是竖着切一刀,切成两半后,再横着来一刀,就得到了很小的方块豆腐。
可是“轮着来”的方法是否可以很好地解决问题呢?再次想象一下,我们现在要切的是一根木条,按照“轮着来”的方法先是竖着切一刀,木条一分为二,干净利落,接下来就是再横着切一刀,这个时候就有点考验刀法了,如果木条的直径(横截面)较大,还可以下手,如果直径较小,就没法往下切了。因此,如果K维数据的分布像上面的豆腐一样,“轮着来”的切分方法是可以奏效,但是如果K维度上数据的分布像木条一样,“轮着来”就不好用了。因此,还需要想想其他的切法。
如果一个K维数据集合的分布像木条一样,那就是说明这K维数据在木条较长方向代表的维度上,这些数据的分布散得比较开,数学上来说,就是这些数据在该维度上的方差(invariance)比较大,换句话说,正因为这些数据在该维度上分散的比较开,我们就更容易在这个维度上将它们划分开,因此,这就引出了我们选择维度的另一种方法:最大方差法(max invarince),即每次我们选择维度进行划分时,都选择具有最大方差维度。
摘自:http://blog.csdn.net/junshen1314/article/details/51121582
KD树——k=1时就是BST,里面的数学原理还是有不明白的地方,为啥方差划分?的更多相关文章
- KD树的极简单笔记(待后续更新)
今天(18.5.4)室友A突然问我算法怎么入门,兴奋之下给他安利了邓公的<数据结构>,然而他接着又问我能不能两周内快速入门,毕竟打算搞Machine Learning,然后掏出手机看了下他 ...
- 02-17 kd树
目录 kd树 一.kd树学习目标 二.kd树引入 三.kd树详解 3.1 构造kd树 3.1.1 示例 3.2 kd树搜索 3.2.1 示例 四.kd树流程 4.1 输入 4.2 输出 4.3 流程 ...
- k临近法的实现:kd树
# coding:utf-8 import numpy as np import matplotlib.pyplot as plt T = [[2, 3], [5, 4], [9, 6], [4, 7 ...
- 从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...
- k近邻法的C++实现:kd树
1.k近邻算法的思想 给定一个训练集,对于新的输入实例,在训练集中找到与该实例最近的k个实例,这k个实例中的多数属于某个类,就把该输入实例分为这个类. 因为要找到最近的k个实例,所以计算输入实例与训练 ...
- <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...
- kd树 求k近邻 python 代码
之前两篇随笔介绍了kd树的原理,并用python实现了kd树的构建和搜索,具体可以参考 kd树的原理 python kd树 搜索 代码 kd树常与knn算法联系在一起,knn算法通常要搜索k近邻, ...
- 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...
- 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!
1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...
随机推荐
- 一篇文章告诉你如何使用EF CodeFirst做增删改查
一.修改数据 其实修改涉及的内容挺多的,是相对于其他操作来说比较繁琐.也是本文的重头戏. 虽然都是基础内容,但是也是值得细细品味的. 1.最简单直接的修改数据就是从数据库里检索出数据修改相应的字段即可 ...
- Redis主从复制失败(master_link_status:down)
今天配置redis主从复制时出现master_link_status:down提示. 首先打开slave的redis.conf配置文件,确定slaveof 和masterauth 两个选项配置是否正确 ...
- 【译】x86程序员手册00 - 翻译起因
从上一次学习MIT的操作系统课程又过去了一年.上次学习并没有坚持下去.想来虽有种种原因,其还在自身无法坚持罢了.故此次再鼓起勇气重新学习,发现课程都已由2014改版为2016了.但大部分内容并没有改变 ...
- iOS错误报告中关于崩溃地址的分析
http://blog.csdn.net/gaoyp/article/details/46912753 一.错误报告中的三种地址:stack addressload addresssymbol add ...
- if判断,while循环,for循环
if判断 if判断其实就是让计算机模拟人的判断 if if 条件: 代码1 代码2 代码3 ... # 代码块(同一缩进级别的代码,例如代码1.代码2和代码3是相同缩进的代码,这三个代码组合在一起就是 ...
- Centos7搭建ansible运维自动化工具
1)设置主机名和hosts文件 2)配置阿里云repo源 Wget -O /etc/yum.repos.d/aliyun.repo https://mirrors.aliyun.com/repo/Ce ...
- react 子组件调用父组件方法
import React from 'react'import '../page1/header.css'import { Table } from 'antd'import Child from ' ...
- WING IDE 快捷键
工欲善其事必先利其器,所以我们无论使用什么编译器,都要熟悉一些快捷键. Ctrl+N新建文件 Ctrl+O 打开文件夹 Ctrl+W 关闭当前文件 Ctrl+S 保存文件 Ctrl+shif+S 另存 ...
- forcedirectories和CreateDirectory
forcedirectories和CreateDirectory都能创建文件ForceDirectories可以创建多层目录. 如果你创建一个目录为c:\mymusic\music 如果你的C盘不存在 ...
- 学习Android
=========================================today start to learn Android================= 我们学习需要的软件: jd ...