KD树——k=1时就是BST,里面的数学原理还是有不明白的地方,为啥方差划分?
Kd-Tree,即K-dimensional tree,是一棵二叉树,树中存储的是一些K维数据。在一个K维数据集合上构建一棵Kd-Tree代表了对该K维数据集合构成的K维空间的一个划分,即树中的每个结点就对应了一个K维的超矩形区域(Hyperrectangle)。
在介绍Kd-tree的相关算法前,我们先回顾一下二叉查找树(Binary Search Tree)的相关概念和算法。k=1就是BST!
例如,图1中是一棵二叉查找树,其满足BST的性质。
图1 二叉查找树(来源:Wiki)
KD树的构建
kd树构建的伪代码如下图所示(伪代码来自《图像局部不变特性特征与描述》王永明 王贵锦 编著):
再举一个简单直观的实例来介绍k-d树构建算法。假设有6个二维数据点{(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},数据点位于二维空间内,如下图所示。为了能有效的找到最近邻,k-d树采用分而治之的思想,即将整个空间划分为几个小部分,首先,粗黑线将空间一分为二,然后在两个子空间中,细黑直线又将整个空间划分为四部分,最后虚黑直线将这四部分进一步划分。
6个二维数据点{(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)}构建kd树的具体步骤为:
- 确定:split域=x。具体是:6个数据点在x,y维度上的数据方差分别为39,28.63,所以在x轴上方差更大,故split域值为x;
- 确定:Node-data = (7,2)。具体是:根据x维上的值将数据排序,6个数据的中值(所谓中值,即中间大小的值)为7,所以Node-data域位数据点(7,2)。这样,该节点的分割超平面就是通过(7,2)并垂直于:split=x轴的直线x=7;
- 确定:左子空间和右子空间。具体是:分割超平面x=7将整个空间分为两部分:x<=7的部分为左子空间,包含3个节点={(2,3),(5,4),(4,7)};另一部分为右子空间,包含2个节点={(9,6),(8,1)};
与此同时,经过对上面所示的空间划分之后,我们可以看出,点(7,2)可以为根结点,从根结点出发的两条红粗斜线指向的(5,4)和(9,6)则为根结点的左右子结点,而(2,3),(4,7)则为(5,4)的左右孩子(通过两条细红斜线相连),最后,(8,1)为(9,6)的左孩子(通过细红斜线相连)。如此,便形成了下面这样一棵k-d树:
问题1: 每次对子空间的划分时,怎样确定在哪个维度上进行划分?
最简单的方法就是轮着来,即如果这次选择了在第i维上进行数据划分,那下一次就在第j(j≠i)维上进行划分,例如:j = (i mod k) + 1。想象一下我们切豆腐时,先是竖着切一刀,切成两半后,再横着来一刀,就得到了很小的方块豆腐。
可是“轮着来”的方法是否可以很好地解决问题呢?再次想象一下,我们现在要切的是一根木条,按照“轮着来”的方法先是竖着切一刀,木条一分为二,干净利落,接下来就是再横着切一刀,这个时候就有点考验刀法了,如果木条的直径(横截面)较大,还可以下手,如果直径较小,就没法往下切了。因此,如果K维数据的分布像上面的豆腐一样,“轮着来”的切分方法是可以奏效,但是如果K维度上数据的分布像木条一样,“轮着来”就不好用了。因此,还需要想想其他的切法。
如果一个K维数据集合的分布像木条一样,那就是说明这K维数据在木条较长方向代表的维度上,这些数据的分布散得比较开,数学上来说,就是这些数据在该维度上的方差(invariance)比较大,换句话说,正因为这些数据在该维度上分散的比较开,我们就更容易在这个维度上将它们划分开,因此,这就引出了我们选择维度的另一种方法:最大方差法(max invarince),即每次我们选择维度进行划分时,都选择具有最大方差维度。
摘自:http://blog.csdn.net/junshen1314/article/details/51121582
KD树——k=1时就是BST,里面的数学原理还是有不明白的地方,为啥方差划分?的更多相关文章
- KD树的极简单笔记(待后续更新)
今天(18.5.4)室友A突然问我算法怎么入门,兴奋之下给他安利了邓公的<数据结构>,然而他接着又问我能不能两周内快速入门,毕竟打算搞Machine Learning,然后掏出手机看了下他 ...
- 02-17 kd树
目录 kd树 一.kd树学习目标 二.kd树引入 三.kd树详解 3.1 构造kd树 3.1.1 示例 3.2 kd树搜索 3.2.1 示例 四.kd树流程 4.1 输入 4.2 输出 4.3 流程 ...
- k临近法的实现:kd树
# coding:utf-8 import numpy as np import matplotlib.pyplot as plt T = [[2, 3], [5, 4], [9, 6], [4, 7 ...
- 从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...
- k近邻法的C++实现:kd树
1.k近邻算法的思想 给定一个训练集,对于新的输入实例,在训练集中找到与该实例最近的k个实例,这k个实例中的多数属于某个类,就把该输入实例分为这个类. 因为要找到最近的k个实例,所以计算输入实例与训练 ...
- <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...
- kd树 求k近邻 python 代码
之前两篇随笔介绍了kd树的原理,并用python实现了kd树的构建和搜索,具体可以参考 kd树的原理 python kd树 搜索 代码 kd树常与knn算法联系在一起,knn算法通常要搜索k近邻, ...
- 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...
- 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!
1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...
随机推荐
- [转]Wote用python语言写的imgHash.py
#!/usr/bin/python import glob import os import sys from PIL import Image EXTS = 'jpg', 'jpeg', 'JPG' ...
- Android Eclipse 安装教程 2016.06.13版
2016.8.16修改 第一步,也是最为关键的一步——修改hosts文件 为什么说是最关键的一步呢?因为接下来的操作,我们都需要连接google网,也就是要连接国外的网站.一般情况下,国外的网站是无法 ...
- 关于类似vue-cli 脚手架
#!/usr/bin/env node const download = require('download-git-repo') const program = require('commander ...
- SQL基本操作——ALTER
ALTER TABLE 语句用于在已有的表中添加.修改或删除列. Persons 表: ID LastName FirstName Address City 1 Adams John Oxford S ...
- ubuntu下sudo命令不能使用问题
不知道从什么时候开始,ctrl+alt+F1进入命令行之后,登录成功.使用sudo命令,不能使用....被坑了很久. 解决方法: 出现 [sudo ] username !!! 之后,在输入一遍 密码 ...
- GNSS数据下载网站
Bernese 数据表文件下载 rinex文件下载 ftp://nfs.kasi.re.kr DCB.ION文件ftp://ftp.unibe.ch/AIUB/CODE/ 下载5.0更新文件 ftp: ...
- Xamarin.Forms实现touch事件
Xamarin.Forms的View没有touch事件,只能自己实现 首先,在共享项目里面,放入这几个类,结构大概是这样的: using System; using Xamarin.Forms; na ...
- Mysql命令mysql:连接Mysql数据库
mysql命令格式: mysql -h主机地址 -u用户名 -p用户密码 1) 连接到本机上的MYSQL首先打开DOS窗口,然后进入目录mysql\bin,再键入命令mysql -u root -p, ...
- 在Unity中对注册表的信息进行操作
问题1 在对注册表进行操作时无法生成注册表相关的类 解决办法: 增加头文件using Microsft.Win32; 问题2 在运行程序时报错同时注 ...
- 数据结构与算法(5) -- deque
vector是单向开口的连续线性空间,deque则是一种双向开口的连续线性空间.所谓双向开口,意思是可以在头尾两端分别做元素的插入和删除操作.stl中deque与vector最大的差异,一在于dequ ...