题意:求sum(gcd(i,j),1<=i<j<=n)。

思路:首先能够看出能够递推求出ans[n],由于ans[n-1]+f(n),当中f(n)表示小于n的数与n的gcd之和

问题转化为了求f(n),由于小于n的数与n的gcd一定是n的因数,

所以f(n)能够表示为sum(i)*i,当中sum(i)表示全部和n的gcd为i的数的数量,我们要求满足gcd(a, n) = i,的个数,能够转化为求gcd(a/i, n/i) = 1的个数,

于是能够发现sun(i) = phi(n/i),这里枚举n的因数的方法仿照素数筛法,时间复杂度为O(nlogn).

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<ctime>
#define eps 1e-6
#define LL long long
#define pii (pair<int, int>)
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std; const int maxn = 5000000;
//const int INF = 0x3f3f3f3f;
int n;
LL ans[5000000]; int phi[maxn];
void phi_table(int n) {
for(int i = 2; i <= n; i++) phi[i] = 0;
phi[1] = 1;
for(int i = 2; i <= n; i++) if(!phi[i])
for(int j = i; j <= n; j+=i) {
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i-1);
}
} void init() {
phi_table(4000000);
ans[1] = 0;
for(int i = 1; i <= 4000000; i++) {
for(int j = i*2; j <= 4000000; j+=i) {
ans[j] += phi[j/i]*i;
}
}
for(int i = 2; i <= 4000000; i++) ans[i] += ans[i-1];
} int main() {
//freopen("input.txt", "r", stdin);
init(); //cout << phi[3] << endl;
while(scanf("%d", &n) == 1 && n) {
cout << ans[n] << endl;
}
return 0;
}

UVA 11426 GCD - Extreme (II) (数论|欧拉函数)的更多相关文章

  1. UVA 11426 GCD - Extreme (II) (欧拉函数)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Problem JGCD Extreme (II)Input: Standard ...

  2. UVA 11426 GCD - Extreme (II) (欧拉函数)题解

    思路: 虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做... 当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k.设ans[i]是1~i-1与i的GCD之和,所 ...

  3. UVA 11426 - GCD - Extreme (II) (数论)

    UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...

  4. GCD - Extreme (II) (欧拉函数妙用)

    https://cn.vjudge.net/problem/UVA-11426 题意:求 解题思路:我们可以定义一个变量dis[n],dis[n]意为1~(n-1)与n的gcd(最大公约数)的总和,那 ...

  5. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  6. UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)

    Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...

  7. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  8. UVA 11426 - GCD - Extreme (II) 欧拉函数-数学

    Given the value of N, you will have to find the value of G. The definition of G is given below:G =i< ...

  9. UVA 11426 GCD - Extreme (II) 欧拉函数

    分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...

随机推荐

  1. Unity的Json解析<一>--读取Json文件

    本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/50373558 作者:car ...

  2. Linux学习总结(15)——提高 Vim 和 Shell 效率的 9 个建议

    你上一次使用 CAPSLOCK 键是什么时候?很久没有了对不对?噢,我也是,它已经被遗忘了,它浪费了键盘上一个黄金位置.让我们把它重映射成 Control 键来发挥它的作用吧!这里告诉了你在不同的操作 ...

  3. ASP.NET-前台view返回model集合

    有时操作列表的时候想一次提交一个model集合,这样后台controller直接接受后就可以直接进行操作了,不用使用js,比较方便,也体现了MVC的Binding模式的优势,方法如下: 准备: 1.两 ...

  4. 洛谷 P2243 电路维修

    P2243 电路维修 题目背景 Elf 是来自Gliese 星球的少女,由于偶然的原因漂流到了地球上.在她无依无靠的时候,善良的运输队员Mark 和James 收留了她.Elf 很感谢Mark和Jam ...

  5. IntelliJ IDEA could not autowire no beans of 'Decoder'

    IntelliJ IDEA could not autowire no beans of  'Decoder' 学习了:http://blog.csdn.net/u012453843/article/ ...

  6. Chrome的JSON View插件

    Chrome的JSON View插件 学习了:http://www.cnplugins.com/zhuanti/five-chrome-json-plugins.html 下载了:http://www ...

  7. Nginx系列(四)--工作原理

    上篇文章介绍了Nginx框架的设计之管理进程以及多个工作进程的设计.master进程用来管理通过fork子进程与子进程通信.子进程通过处理进程信号接到master的通信去处理请求. Nginx工作原理 ...

  8. bzoj2464: 中山市选[2009]小明的游戏(最短路)

    2464: 中山市选[2009]小明的游戏 题目:传送门 题解: 最短路的裸题... 代码: #include<cstdio> #include<cstring> #inclu ...

  9. 我所认识的EXT2(一)

    前言: 本文是笔者自己在学习文件系统中的一些体会,写出来和大家分享一下.本文首先是介绍了下文件系统的一些理论概念,然后分析了ext2文件系统的原理和部分源码. 文件系统是什么: 人们在认识一件陌生事物 ...

  10. SpringBoot学习笔记(5)----SpringBoot中异常处理的三种方法

    对于异常的处理,Spring Boot中提供默认的一个异常处理界面,如下图: 但是在实际的运用开发中,这样的页面显然是不友好的,Spring Boot也提供了自定义异常处理的方式,如下总结三种一场处理 ...