A natural number, N, that can be written as the sum and product of a given set of at least two natural numbers, {a1a2, ... , ak}
is called a product-sum number: N = a1 + a2 + ... + ak = a1 × a2 × ... × ak.

For example, 6 = 1 + 2 + 3 = 1 × 2 × 3.

For a given set of size, k, we shall call the smallest N with this property a minimal product-sum number. The minimal product-sum numbers for sets of size, k =
2, 3, 4, 5, and 6 are as follows.

k=2: 4 = 2 × 2 = 2 + 2

k=3: 6 = 1 × 2 × 3 = 1 + 2 + 3

k=4: 8 = 1 × 1 × 2 × 4 = 1 + 1 + 2 + 4

k=5: 8 = 1 × 1 × 2 × 2 × 2 = 1 + 1 + 2 + 2 + 2

k=6: 12 = 1 × 1 × 1 × 1 × 2 × 6 = 1 + 1 + 1 + 1 + 2 + 6

Hence for 2≤k≤6, the sum of all the minimal product-sum numbers is 4+6+8+12 = 30; note that 8 is only counted once in the sum.

In fact, as the complete set of minimal product-sum numbers for 2≤k≤12 is {4, 6, 8, 12, 15, 16}, the sum is 61.

What is the sum of all the minimal product-sum numbers for 2≤k≤12000?

n[k]表示minimal product-sum numbers for size=k

n[k]的上界为2*k,由于2*k总是能分解成2*k,然后2*k=k+2+(1)*(k-2)

显然n[k]的下界为k

对于一个数num   因式分解后因子个数为product   这些因子的和为sump

则须要加入的1的个数为num-sump,所以size k=num-sump+product

maxk = 12000
n=[2*maxk for i in range(maxk)] def getpsn(num,sump,product,start):
#print(num,' ',sump,' ',product)
k = num - sump + product
if k < maxk:
if num < n[k]:
n[k] = num
for i in range(start,maxk//num * 2): #控制num<=2*maxk
getpsn(num * i,sump + i,product + 1,i) getpsn(1,1,1,2)
ans=sum(set(n[2:]))
print(ans)

Project Euler:Problem 88 Product-sum numbers的更多相关文章

  1. Project Euler:Problem 61 Cyclical figurate numbers

    Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygon ...

  2. Project Euler:Problem 42 Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  3. Project Euler:Problem 55 Lychrel numbers

    If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindr ...

  4. Project Euler:Problem 87 Prime power triples

    The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...

  5. Project Euler:Problem 28 Number spiral diagonals

    Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is forme ...

  6. Project Euler:Problem 32 Pandigital products

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  7. Project Euler:Problem 76 Counting summations

    It is possible to write five as a sum in exactly six different ways: 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 ...

  8. Project Euler:Problem 34 Digit factorials

    145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are ...

  9. Project Euler:Problem 89 Roman numerals

    For a number written in Roman numerals to be considered valid there are basic rules which must be fo ...

随机推荐

  1. solaris&nbsp;10&nbsp;关闭ftp、telnet

    安装solaris10,启动后发现找不到ftp.telnet的关闭方法, 管理命令 svcadm(服务状态管理,启动.停止等) # svcs 查看当前所有的服务状态,可以使用|管道符重定向作更个性化的 ...

  2. JS中的数据类型及判断数据类型的方法

    简单类型(基本类型): number,string,boolean,null,undefined 复杂类型(引用类型):object typeof 只能判断基本数据类型 instanceof 能够判断 ...

  3. bind(),call(), apply()方法的区别是什么?

    bind(),call(), apply()方法的区别是什么? 共同点:改变this指向,任何调用都不在起作用 bind() 改变this的指向,不会调用函数,返回一个新的函数 var o ={a:' ...

  4. 抽象工厂模式(AbsFactory)C++实现

    模式意图:提供一个创建一系列相关或相互依赖对象的接口,二无需指定他们具体的类. 效果: 分离了具体的类.     使  a.客户与类的实现分离  b.客户通过抽象接口操纵实例  c.产品的类名在实现中 ...

  5. css中单位的使用

    css中许多的属性都需要添加长度,而长度一般由数字和单位构成,如1px,1.5em,2vh:也可以省略单位,如line-height:1.5,表示行高为字体大小的1.5倍: 长度单位一般也分为相对长度 ...

  6. android黑科技系列——实现静态的默认安装和卸载应用

    一.访问隐藏的API方式进行静态的默认安装和卸载 1.系统安装程序 android自带了一个安装程序—/system/app/PackageInstaller.apk.大多数情况下,我们手机上安装应用 ...

  7. mysql的模糊查询

    mysql模糊查询like/REGEXP(1)like / not like MySql的like语句中的通配符:百分号.下划线和escape %:表示任意个或多个字符.可匹配任意类型和长度的字符. ...

  8. JS中常见问题

    //s金额 n保留几位小数 默认保留两位小数 s代表金额,n代表保留的小数位数 function formatMoney(s, n) { n = n > 0 && n <= ...

  9. Juery实现选项卡

    选项卡是一种很常用的组件.比如3个选项的选项卡,比较笨的一种办法是,把3个状态写成3个独立页面,互相链接.这样做的问题也显而易见,切换的时候url会变.如果是手机端网页,加载慢一点,给人的感觉是不断的 ...

  10. MongoDB_基础知识

    mongoDB术语:database-数据库,collection-数据库表/集合,document-数据记录行/文档,field-数据字段/域,index-索引,primary key-主键(Mon ...