BZOJ 3629 约数和定理+搜索
呃呃
看到了这道题 没有任何思路…… 百度了一发题解 说要用约数和定理
就查了一发
http://baike.so.com/doc/7207502-7432191.html
(不会的可以先学习一下)
然后呢 我们考虑枚举约数
先线性筛一遍10^5以下的 10^5以上的数可以用已经筛过的素因数枚举
最后就搜一下就好了 (记得判断=1的情况)
还有 此题PE很坑爹
不能有行末空格 0的情况不用输出空行
//By SiriusRen
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
#define N 100000
int s,cnt,pri[N],Ans[N];
bool p[N+5];
void get_prime(){
for(int i=2;i<=N;i++){
if(!p[i])pri[++cnt]=i;
for(int j=1;j<=cnt&&i*pri[j]<=N;j++){
p[i*pri[j]]=1;
if(i%pri[j]==0)break;
}
}
}
bool is_prime(int x){
if(x<=N)return !p[x];
int temp=sqrt(x);
for(int i=1;pri[i]<=temp;i++)
if(x%pri[i]==0)return 0;
return 1;
}
void dfs(int last,int ans,int sum){
if(sum==1){Ans[++cnt]=ans;return;}
if(sum-1>pri[last]&&is_prime(sum-1))Ans[++cnt]=ans*(sum-1);
for(int i=last+1;pri[i]*pri[i]<=sum;i++)
for(int psum=pri[i]+1,div=pri[i];psum<=sum;div*=pri[i],psum+=div)
if(sum%psum==0)dfs(i,ans*div,sum/psum);
}
int main(){
get_prime();
while(~scanf("%d",&s)){
cnt=0,dfs(0,1,s);
sort(Ans+1,Ans+1+cnt);
printf("%d\n",cnt);
for(int i=1;i<=cnt;i++){
printf("%d",Ans[i]);
if(i!=cnt)putchar(' ');
}
if(cnt)puts("");
}
}
BZOJ 3629 约数和定理+搜索的更多相关文章
- bzoj 3629 [JLOI2014]聪明的燕姿——约数和定理+dfs
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3629 如果要搜索,肯定得质因数分解吧:就应该朝这个方向想. **约数和定理: 对于任意一个大 ...
- 【搜索】【约数个数定理】[HAOI2007]反素数ant
对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数. 所以,n以内的反质数即为不超过n的 ...
- bzoj3629 [JLOI2014]聪明的燕姿——DFS+约数和定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3629 扫除了一个知识盲点:约数和定理 约数和定理: 对于一个大于1正整数n可以分解质因数:n ...
- [BZOJ 3629][ JLOI2014 ]聪明的燕姿
这道题考试选择打表,完美爆零.. 算数基本定理: 任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积N=P₁^a₁ P₂^a₂…Pn^an,这里P₁<P₂<…<Pn均为质数, ...
- hdu1492(约数个数定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...
- poj 1845 Sumdiv 约数和定理
Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...
- 【线性筛】【筛法求素数】【约数个数定理】URAL - 2070 - Interesting Numbers
素数必然符合题意. 对于合数,如若它是某个素数x的k次方(k为某个素数y减去1),一定不符合题意.只需找出这些数. 由约数个数定理,其他合数一定符合题意. 就从小到大枚举素数,然后把它的素数-1次方都 ...
- 【POJ1845】Sumdiv(数论/约数和定理/等比数列二分求和)
题目: POJ1845 分析: 首先用线性筛把\(A\)分解质因数,得到: \[A=p_1^{a_1}*p_2^{a_2}...*p_n^{a_n} (p_i是质数且a_i>0) \] 则显然\ ...
- 【FZYZOJ】数论课堂 题解(约数个数定理)
前言:想了两个小时orz,最后才想到要用约数个数定理…… ------------- 题目大意: 给定$n,q,A[1],A[2],A[3]$ 现有$A[i]=(A[i-1]+A[i-2]+A[i-3 ...
随机推荐
- 【BZOJ 1005】[HNOI2008]明明的烦恼(暴力化简法)
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1005 [题意] 中文题 [题解] 一棵节点上标有序号的树会和一个prufer数列唯一对 ...
- 转:强制Visual Studio以管理员身份运行
Windows 8的一个既安全又蛋疼之处是UAC的行为被改变了.以往在Windows 7中,只要关闭了UAC,自己的帐号又是本机管理员组的,任何程序都会以管理员身份启动.然而,在Windows 8上, ...
- java里的一些特别值得注意的地方
return 语句的作用:1.返回值 2.结束某个方法的执行. 局部变量必需要初始化,全局变量系统会默认初始值: 整型数赋默认值为0. 浮点数赋默认值为0.0,boolean赋默认值为false. c ...
- 从头认识java-17.2 线程中断(interrupt)
这一章节我们来讨论一下线程中断(interrupt). 1.什么是线程中断(interrupt)? 就是在多线程执行的时候,我们给线程贴上一个中断的标记.可是不要求线程终止. 2.样例: 中断的样例: ...
- HDU 4756 Install Air Conditioning(次小生成树)
题目大意:给你n个点然后让你求出去掉一条边之后所形成的最小生成树. 比較基础的次小生成树吧. ..先prime一遍求出最小生成树.在dfs求出次小生成树. Install Air Conditioni ...
- java 经常使用測试框架
1. 经常使用单元化測试框架 junit4 , TestNG 能够通过注解 @Before @After @BeforeClass @AfterClass 分别作方法与类级的初始化与结束动作. tes ...
- angularjs 缓存 $q
<!DOCTYPE HTML> <html ng-app="myApp"> <head> <meta http-equiv="C ...
- 6. Intellij Idea 2017创建web项目及tomcat部署实战
转自:https://www.cnblogs.com/shindo/p/7272646.html 相关软件:Intellij Idea2017.jdk16.tomcat7 Intellij Idea直 ...
- vue -- 7 个 有用的 Vue 开发技巧
1 状态共享 随着组件的细化,就会遇到多组件状态共享的情况, Vuex当然可以解决这类问题,不过就像 Vuex官方文档所说的,如果应用不够大,为避免代码繁琐冗余,最好不要使用它,今天我们介绍的是 vu ...
- 从Git里拉取远程的所有分支
从Git里拉取远程的所有分支 git branch -r | grep -v '\->' | while read remote; do git branch --track "${r ...