POJ 2376 Cleaning Shifts (线段树优化DP)
题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数
线段树优化$DP$裸题..
先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里
排序,让所有线段构成左右端点位置都递增的排列
定义$f[i]$表示第$i$条线段,覆盖到第$i$条线段右端点时,需要的最少的线段数
$f[i]=min(f[j]+1)\;(j<i,r[j]>=l[i])$
朴素是$n^2$转移的
开一棵最小值线段树,记录从$1$覆盖到位置$x$的最少线段数
每次求$f[i]$就是在线段树里区间查询。然后在$r[i]$位置更新即可
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 25010
#define M1 1000010
#define ll long long
#define dd double
#define inf 233333333
using namespace std; int gint()
{
int ret=,fh=;char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&&c<=''){ret=ret*+c-'';c=getchar();}
return ret*fh;
} struct SEG{
int mi[M1<<];
void pushup(int rt){ mi[rt]=min(mi[rt<<],mi[rt<<|]); }
void build(int l,int r,int rt)
{
mi[rt]=inf; if(l==r) return;
int mid=(l+r)>>;
build(l,mid,rt<<);
build(mid+,r,rt<<|);
}
void update(int x,int l,int r,int rt,int w)
{
if(l==r){ mi[rt]=w; return; }
int mid=(l+r)>>;
if(x<=mid) update(x,l,mid,rt<<,w);
else update(x,mid+,r,rt<<|,w);
pushup(rt);
}
int query(int L,int R,int l,int r,int rt)
{
if(L<=l&&r<=R) return mi[rt];
int mid=(l+r)>>,ans=inf;
if(L<=mid) ans=min(ans,query(L,R,l,mid,rt<<));
if(R>mid) ans=min(ans,query(L,R,mid+,r,rt<<|));
return ans;
}
}s; struct node{int l,r;}a[N1],tmp[N1];
int cmp(node s1,node s2){ if(s1.l!=s2.l) return s1.l<s2.l; return s1.r>s2.r; }
int n,m,nn;
int f[M1]; int main()
{
scanf("%d%d",&n,&m);
int i,ma,ans=inf;
for(i=;i<=n;i++) tmp[i].l=gint(),tmp[i].r=gint();
sort(tmp+,tmp+n+,cmp);
for(i=,ma=;i<=n;i++)
{
if(tmp[i].l>ma+){ puts("-1"); return ; }
if(tmp[i].r>ma) ma=tmp[i].r,a[++nn]=tmp[i];
}
s.build(,m,);
f[]=; s.update(a[].r,,m,,);
if(a[].r==m){ puts(""); return ; }
for(i=,ma=a[].r;i<=nn;i++)
{
f[i]=s.query(max(,a[i].l-),ma,,m,)+;
s.update(a[i].r,,m,,f[i]);
ma=a[i].r;
if(a[i].r==m) ans=f[i];
}
if(ans==inf) puts("-1");
else printf("%d\n",ans);
return ;
}
POJ 2376 Cleaning Shifts (线段树优化DP)的更多相关文章
- POJ 2376 Cleaning Shifts(轮班打扫)
POJ 2376 Cleaning Shifts(轮班打扫) Time Limit: 1000MS Memory Limit: 65536K [Description] [题目描述] Farmer ...
- Codeforces Round #426 (Div. 2) D 线段树优化dp
D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】
BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...
- [AGC011F] Train Service Planning [线段树优化dp+思维]
思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...
- 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp
题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...
- 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$
正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...
- D - The Bakery CodeForces - 834D 线段树优化dp···
D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...
- 4.11 省选模拟赛 序列 二分 线段树优化dp set优化dp 缩点
容易想到二分. 看到第一个条件容易想到缩点. 第二个条件自然是分段 然后让总和最小 容易想到dp. 缩点为先:我是采用了取了一个前缀最小值数组 二分+并查集缩点 当然也是可以直接采用 其他的奇奇怪怪的 ...
- Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)
Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...
随机推荐
- @Zookeeper可视化工具。 ZK 安装 node-zk-browser。2015.10.22亲测可用
zookeeper基本是基于API和console进行znode的操作,并没有一个比较方便的操作界面,这里也发现了taobao 伯岩写的一个工具,可以比较方便的查询zookeeper信息. 工具的开发 ...
- ThinkPHP模版引擎之变量输出具体解释
ThinkPHP模版引擎之变量输出具体解释 使用ThinkPHP开发有一定时间了,今日对ThinkPHP的模板引擎变量解析深入了解了一下.做出一些总结,分享给大家供大家參考. 详细分析例如以下: 我们 ...
- 具体解释Hibernate中的事务
1.前言 上一篇博客解说了Hibernate中的一级缓存,属于Session级别的.这篇博客解说一下Hibernate中的事务机制. 有关事务的概念.请參照通俗易懂数据库中的事务. 2.怎样处理Hi ...
- Notepad++如何编译、运行Java
首先要让Notepad++编译和运行Java,前提是电脑里已经配置好了Java的环境(这里可以参考我博客里关于Java环境配置的那篇随笔). 在Notepad++上面的选项栏中找到 插件---> ...
- 利用scrapy抓取网易新闻并将其存储在mongoDB
好久没有写爬虫了,写一个scrapy的小爬爬来抓取网易新闻,代码原型是github上的一个爬虫,近期也看了一点mongoDB.顺便小用一下.体验一下NoSQL是什么感觉.言归正传啊.scrapy爬虫主 ...
- 安装eclipse maven插件m2eclipse No repository found containing
m2eclipse插件是Eclipse的一款Maven插件. 安装m2eclipse插件的步骤例如以下: 启动Eclipse,在菜单条中选择Help,然后选择Install New Software- ...
- HDU 4386 Quadrilateral(数学啊)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4386 Problem Description One day the little Jack is p ...
- EOJ 3031 二进制倒置
题目描述 给定一个整数 n(0≤n≤10100).将 n 的 334 位二进制表示形式(不包括开头可能的值为 0 的位,n=0 表示为 1 位 0)前后倒置,输出倒置后的二进制数对应的整数. 例如:n ...
- 安装MySQL最后一步出现错误Error Nr.1045解决方法
转自:https://blog.csdn.net/gsls200808/article/details/46846019 安装MySQL最后一步出现错误Error Nr.1045 Connection ...
- 10.2 Hibernate持久层
点击项目右键->MyEclipse->Add Hibernate Capabilities 打开MyEclipse Hibernate Perspective(MyEclipse Hibe ...