python yield 生成器的介绍(转载)
您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?
我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。
如何生成斐波那契數列
斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:
清单 1. 简单输出斐波那契數列前 N 个数
def fab(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1
执行 fab(5),我们可以得到如下输出:
>>> fab(5)
1
1
2
3
5
结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。
要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:
清单 2. 输出斐波那契數列前 N 个数第二版
def fab(max):
n, a, b = 0, 0, 1
L = []
while n < max:
L.append(b)
a, b = b, a + b
n = n + 1
return L
可以使用如下方式打印出 fab 函数返回的 List:
>>> for n in fab(5):
... print n
...
1
1
2
3
5
改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List
来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:
清单 3. 通过 iterable 对象来迭代
for i in range(1000): pass
会导致生成一个 1000 个元素的 List,而代码:
for i in xrange(1000): pass
则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。
利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:
清单 4. 第三个版本
class Fab(object):
def __init__(self, max):
self.max = max
self.n, self.a, self.b = 0, 0, 1
def __iter__(self):
return self
def next(self):
if self.n < self.max:
r = self.b
self.a, self.b = self.b, self.a + self.b
self.n = self.n + 1
return r
raise StopIteration()
Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:
>>> for n in Fab(5):
... print n
...
1
1
2
3
5
然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:
清单 5. 使用 yield 的第四版
def fab(max):
n, a, b = 0, 0, 1
while n < max:
yield b
# print b
a, b = b, a + b
n = n + 1
'''
第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。
调用第四版的 fab 和第二版的 fab 完全一致:
>>> for n in fab(5):
... print n
...
1
1
2
3
5
简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。
也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:
清单 6. 执行流程
>>> f = fab(5)
>>> f.next()
1
>>> f.next()
1
>>> f.next()
2
>>> f.next()
3
>>> f.next()
5
>>> f.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。
我们可以得出以下结论:
一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。
yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。
如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:
清单 7. 使用 isgeneratorfunction 判断
>>> from inspect import isgeneratorfunction
>>> isgeneratorfunction(fab)
True
要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:
清单 8. 类的定义和类的实例
>>> import types
>>> isinstance(fab, types.GeneratorType)
False
>>> isinstance(fab(5), types.GeneratorType)
True
fab 是无法迭代的,而 fab(5) 是可迭代的:
>>> from collections import Iterable
>>> isinstance(fab, Iterable)
False
>>> isinstance(fab(5), Iterable)
True
每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:
>>> f1 = fab(3)
>>> f2 = fab(5)
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 2
>>> print 'f2:', f2.next()
f2: 2
>>> print 'f2:', f2.next()
f2: 3
>>> print 'f2:', f2.next()
f2: 5
回页首
return 的作用
在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。
回页首
另一个例子
另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:
清单 9. 另一个 yield 的例子
def read_file(fpath):
BLOCK_SIZE = 1024
with open(fpath, 'rb') as f:
while True:
block = f.read(BLOCK_SIZE)
if block:
yield block
else:
return
以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。
注:本文的代码均在 Python 2.7 中调试通过
python yield 生成器的介绍(转载)的更多相关文章
- Python yield 生成器
yield:生成器 任何使用yield的函数都称之为生成器,如: def count(n): : yield n #生成值:n 另外一种说法:生成器就是一个返回迭代器的函数,与普通函数的区别是生成 ...
- python 之生成器的介绍
# 用生成器(generators)方便地写惰性运算 def double_numbers(iterable): for i in iterable: yield i + i # 生成器只有在需要时才 ...
- Python中的yield生成器的简单介绍
Python yield 使用浅析(整理自:廖 雪峰, 软件工程师, HP 2012 年 11 月 22 日 ) 初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关 ...
- Python中生成器和yield语句的用法详解
Python中生成器和yield语句的用法详解 在开始课程之前,我要求学生们填写一份调查表,这个调查表反映了它们对Python中一些概念的理解情况.一些话题("if/else控制流" ...
- (转) Python Generators(生成器)——yield关键字
http://blog.csdn.net/scelong/article/details/6969276 生成器是这样一个函数,它记住上一次返回时在函数体中的位置.对生成器函数的第二次(或第 n 次) ...
- Python Generators(生成器)--yield
参考:http://blog.csdn.net/scelong/article/details/6969276 Python生成器 什么是python生成器,意思是带有一个yield语句的函数,既然它 ...
- Python爬虫与数据分析之进阶教程:文件操作、lambda表达式、递归、yield生成器
专栏目录: Python爬虫与数据分析之python教学视频.python源码分享,python Python爬虫与数据分析之基础教程:Python的语法.字典.元组.列表 Python爬虫与数据分析 ...
- python中和生成器协程相关的yield from之最详最强解释,一看就懂(四)
如果认真读过上文的朋友,应该已经明白了yield from实现的底层generator到caller的上传数据通道是什么了.本文重点讲yield from所实现的caller到coroutine的向下 ...
- python中和生成器协程相关yield from之最详最强解释,一看就懂(二)
一. 从列表中yield 语法形式:yield from <可迭代的对象实例> python中的列表是可迭代的, 如果想构造一个生成器逐一产生list中元素,按之前的yield语法,是在 ...
随机推荐
- Pyhton学习——Day61
class Pagination(object): def __init__(self,totalCount,currentPage,perPageItemNum=10,maxPageNum=7): ...
- 用于构建 RESTful Web 服务的多层架构
作者:Bruce Sun, Java 架构师, IBM 出处:http://www.ibm.com/developerworks/cn/web/wa-aj-multitier/ 用于构建 RESTfu ...
- ansible组件 Ad-Hoc
ad hoc ---临时的,在ansible里需要快速执行,并不用保存命令的执行方式 简单命令 playbook 复杂命令 EXAMPLES: - name: install the late ...
- 虚拟机安装mac
没成功,把几篇不错的文章先记录下地址 http://bbs.pcbeta.com/forum.php?mod=viewthread&tid=1437039 http://bbs.pcbeta. ...
- 洛谷P5238 整数校验器
看到没有边读入边处理的,我来水一发 我们要看一下有那些情况是格式不合法的 单独的负号 -0(后面可以有其他数字) 0 +(后面一些数字) 我们用快速读入的方法 读取字符进行处理 还有可能超出范围的 考 ...
- ubuntu/wireshark --Lua: Error during loading: [string "/usr/share/wireshark/init.lua"]:45问题解决
错误如下: 解决方案:修改init.lua 直接运行wireshark的话会报错: Lua: Error during loading:[string "/usr/share/wiresha ...
- MgdDbg工具
ArxDbg是可以查看AutoCAD内部数据结构的工具,可惜是C++的.从网上找到了一个.NET版本的MgdDbg,实现的功能与C++版本的差不多. 1.运行程序,你只要右键点击AutoCAD窗口,在 ...
- POJ 1306
其实求的这个数的式子化简一下,就是C(N,M)..... #include <iostream> #include <algorithm> #include <cstdi ...
- 使用Java语言实现,自己主动生成10个整数(1~100,求出生成数列中的最大值和最小值,不同意使用Arrays类的sort方法
这是考察主要的java基础,没啥难点,直接上代码,近期在准备面试,所以做一些基础的面试题练练手 public class Demo1 { public static void main(String[ ...
- HDU2188 悼念512汶川大地震遇难同胞——选拔志愿者
悼念512汶川大地震遇难同胞--选拔志愿者 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...