您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?

我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。
如何生成斐波那契數列

斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:
清单 1. 简单输出斐波那契數列前 N 个数

def fab(max):
    n, a, b = 0, 0, 1
    while n < max:
        print b
        a, b = b, a + b
        n = n + 1

执行 fab(5),我们可以得到如下输出:

>>> fab(5)
 1
 1
 2
 3
 5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:
清单 2. 输出斐波那契數列前 N 个数第二版

def fab(max):
    n, a, b = 0, 0, 1
    L = []
    while n < max:
        L.append(b)
        a, b = b, a + b
        n = n + 1
    return L

可以使用如下方式打印出 fab 函数返回的 List:

>>> for n in fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:
清单 3. 通过 iterable 对象来迭代

for i in range(1000): pass

会导致生成一个 1000 个元素的 List,而代码:

for i in xrange(1000): pass

则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:
清单 4. 第三个版本

class Fab(object):

def __init__(self, max):
        self.max = max
        self.n, self.a, self.b = 0, 0, 1

def __iter__(self):
        return self

def next(self):
        if self.n < self.max:
            r = self.b
            self.a, self.b = self.b, self.a + self.b
            self.n = self.n + 1
            return r
        raise StopIteration()

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

>>> for n in Fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:
清单 5. 使用 yield 的第四版

def fab(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        # print b
        a, b = b, a + b
        n = n + 1

'''

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

>>> for n in fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:
清单 6. 执行流程

>>> f = fab(5)
 >>> f.next()
 1
 >>> f.next()
 1
 >>> f.next()
 2
 >>> f.next()
 3
 >>> f.next()
 5
 >>> f.next()
 Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
 StopIteration

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:
清单 7. 使用 isgeneratorfunction 判断

>>> from inspect import isgeneratorfunction
 >>> isgeneratorfunction(fab)
 True

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:
清单 8. 类的定义和类的实例

>>> import types
 >>> isinstance(fab, types.GeneratorType)
 False
 >>> isinstance(fab(5), types.GeneratorType)
 True

fab 是无法迭代的,而 fab(5) 是可迭代的:

>>> from collections import Iterable
 >>> isinstance(fab, Iterable)
 False
 >>> isinstance(fab(5), Iterable)
 True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

>>> f1 = fab(3)
 >>> f2 = fab(5)
 >>> print 'f1:', f1.next()
 f1: 1
 >>> print 'f2:', f2.next()
 f2: 1
 >>> print 'f1:', f1.next()
 f1: 1
 >>> print 'f2:', f2.next()
 f2: 1
 >>> print 'f1:', f1.next()
 f1: 2
 >>> print 'f2:', f2.next()
 f2: 2
 >>> print 'f2:', f2.next()
 f2: 3
 >>> print 'f2:', f2.next()
 f2: 5

回页首
return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

回页首
另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:
清单 9. 另一个 yield 的例子

def read_file(fpath):
    BLOCK_SIZE = 1024
    with open(fpath, 'rb') as f:
        while True:
            block = f.read(BLOCK_SIZE)
            if block:
                yield block
            else:
                return

以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。

注:本文的代码均在 Python 2.7 中调试通过

python yield 生成器的介绍(转载)的更多相关文章

  1. Python yield 生成器

    yield:生成器 任何使用yield的函数都称之为生成器,如: def count(n): : yield n   #生成值:n 另外一种说法:生成器就是一个返回迭代器的函数,与普通函数的区别是生成 ...

  2. python 之生成器的介绍

    # 用生成器(generators)方便地写惰性运算 def double_numbers(iterable): for i in iterable: yield i + i # 生成器只有在需要时才 ...

  3. Python中的yield生成器的简单介绍

    Python yield 使用浅析(整理自:廖 雪峰, 软件工程师, HP 2012 年 11 月 22 日 ) 初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关 ...

  4. Python中生成器和yield语句的用法详解

    Python中生成器和yield语句的用法详解 在开始课程之前,我要求学生们填写一份调查表,这个调查表反映了它们对Python中一些概念的理解情况.一些话题("if/else控制流" ...

  5. (转) Python Generators(生成器)——yield关键字

    http://blog.csdn.net/scelong/article/details/6969276 生成器是这样一个函数,它记住上一次返回时在函数体中的位置.对生成器函数的第二次(或第 n 次) ...

  6. Python Generators(生成器)--yield

    参考:http://blog.csdn.net/scelong/article/details/6969276 Python生成器 什么是python生成器,意思是带有一个yield语句的函数,既然它 ...

  7. Python爬虫与数据分析之进阶教程:文件操作、lambda表达式、递归、yield生成器

    专栏目录: Python爬虫与数据分析之python教学视频.python源码分享,python Python爬虫与数据分析之基础教程:Python的语法.字典.元组.列表 Python爬虫与数据分析 ...

  8. python中和生成器协程相关的yield from之最详最强解释,一看就懂(四)

    如果认真读过上文的朋友,应该已经明白了yield from实现的底层generator到caller的上传数据通道是什么了.本文重点讲yield from所实现的caller到coroutine的向下 ...

  9. python中和生成器协程相关yield from之最详最强解释,一看就懂(二)

    一. 从列表中yield  语法形式:yield from <可迭代的对象实例> python中的列表是可迭代的, 如果想构造一个生成器逐一产生list中元素,按之前的yield语法,是在 ...

随机推荐

  1. node——文件写入,文件读取

    ru //实行文件操作 //文件写入 //1.加载文件操作,fs模块 var fs = require('fs'); //2.实现文件写入操作 var msg='Hello world'; //调用f ...

  2. CentOS 7最小安装配置网络

    安装环境: VMware Workstation14 centos 7.5.1804 最小化安装 安装过程: 在系统安装成功后进行网络配置,我这里采用的是动态ip配置.首先得知道网络配置存放的目录: ...

  3. logstash配置如何理解?

    elasticsearch {   action => "index" #The operation on ES   hosts => "localhost: ...

  4. C语言基本语法——函数

    1.什么是函数 2.函数语法 3.函数声明 4.函数调用 5.函数的形参与实参 6.return与exit关键字 7.递归函数 1.什么是函数 • 函数就是一连串语句被组合在一起,并指定了一个名字 • ...

  5. UVALive-8078 Bracket Sequence 简单dp

    题目链接:https://cn.vjudge.net/problem/UVALive-8078 题意 括号序列T是这样定义的: T是个空的 T是(T), {T}, 或者 [T] T是两个T组成的,比如 ...

  6. BZOJ 3697/3127 采药人的路径 (点分治)

    题目大意: 从前有一棵无向树,树上边权均为$0$或$1$,有一个采药人,他认为如果一条路径上边权为$0$和$1$的边数量相等,那么这条路径阴阳平衡.他想寻找一条合法的采药路径,保证阴阳平衡.然后他发现 ...

  7. Android开发进度04

    1,今日:目标:实现登录和注册功能 2,昨天:完成登录和注册的界面以及后台数据库的操作 3,收获:会使用SQlite数据库的操作语句 4,问题:登录时出现问题(登录不上去)

  8. qt quick中qml编程语言

    Qt QML 入门 — 使用C++定义QML类型 发表于 2013 年 3 月 11 日   注册C++类 注册可实例化的类型 注册不实例化的QML类型 附带属性 注册C++类 注册可实例化的类型 如 ...

  9. linux内核(三)文件系统

    1.为什么需要根文件系统 (1)init进程的应用程序在根文件系统上(2)根文件系统提供了根目录/(3)内核启动后的应用层配置(etc目录)在根文件系统上.几乎可以认为:发行版=内核+rootfs(4 ...

  10. ZOJ 3640

    很简单的概率题了 设dp[x]为能力值 为x时出去的期望 天数 #include <iostream> #include <cstdio> #include <cmath ...