/*题都是有一个状态转移方程式 ,
只要推出方程式就问题不大了,首
先对于gameboy来说他下一秒只能
在0~10这十一个位置移动,
而对于1~9这九个位置来说他可以移动(假设他现在的位置为x)到x+1,或者x-1,或者x;
0和10这两个位置只有两个位置可以移动,
可以用dp[t][x],t秒的馅饼获得就看t-1秒时的下一位置(x+1,x,x-1)
因为要求整个过程的最大值,因此求的是dp累加的和,
所以状态转移方程式为 dp[i][j]+=max(dp[i+1][j-1],max(dp[i+1][j],dp[i+1][j+1]));
*/
#include<cstring>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<stdio.h>
using namespace std;
int dp[][];
int main()
{
int n;
while(scanf("%d",&n),n)
{
int t,x,tt=;
memset(dp,,sizeof(dp));
for(int i=; i<n; i++)
{
scanf("%d %d",&x,&t);
//t是时间
//x+1是位置加1
dp[t][x+]++;
tt=max(tt,t);
}
int res=;
//只有最开始的位置是确定的,所以从后面的时间往前
for(int i=tt-; i>=; i--)
//往前面推,在此位置接到的馅饼数,是这一位置接到的加上上一秒接到的和
for(int j=; j>=; j--)
dp[i][j]+=max(dp[i+][j-],max(dp[i+][j],dp[i+][j+]));
//初始位置在5号位置,
cout<<dp[][]<<endl;
}
return ;
}

免费馅饼 HDU - 1176 基础dp的更多相关文章

  1. 免费馅饼 HDU - 1176 (动态规划)

    都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼.说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内.馅饼如果掉在了地上当然就 ...

  2. 题解报告:hdu 1176 免费馅饼(递推dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1176 Problem Description 都说天上不会掉馅饼,但有一天gameboy正走在回家的小 ...

  3. HDU 1176 免费馅饼(数塔dp)

    一开始被吓到了,后来再仔细一读发现就是一个数塔,没有那么复杂 #include<stdio.h> #include<string.h> #include<algorith ...

  4. HDU 1176 经典dp

    记录最晚时间 从time为2枚举到最晚时间 每个时间段的x轴节点都等于上一个时间段的可触及的最大馅饼数 #include<stdio.h> #include<string.h> ...

  5. [ An Ac a Day ^_^ ] HDU 1257 基础dp 最长上升子序列

    最近两天在迎新 看来只能接着水题了…… 新生培训的任务分配 作为一个有担当的学长 自觉去选了动态规划…… 然后我觉得我可以开始水动态规划了…… 今天水一发最长上升子序列…… kuangbin有nlog ...

  6. HDU 1204 基础DP 非连续字段的最大和

    其实这个感觉是一眼题,只不过我真心太菜了. 题目已经告诉你了,有m段,n个数字,那么我们就只需要dp[m][n]即可,然后最后的答案肯定是dp[m][]的那一行,所以其他行都是没有用的,因为我们可以把 ...

  7. HDU 1029 基础dp

    题目链接:Ignatius and the Princess IV 大意:就是在N个数里找出唯一一个至少出现过(N+1)/ 2 次的数. 1 <= N <= 999999. hash: / ...

  8. Max Sum Plus Plus HDU - 1024 基础dp 二维变一维的过程,有点难想

    /* dp[i][j]=max(dp[i][j-1]+a[j],max(dp[i-1][k])+a[j]) (0<k<j) dp[i][j-1]+a[j]表示的是前j-1分成i组,第j个必 ...

  9. HDU 1003 基础dp 最大连续序列和

    常常做错的一道题.. 因为总是要有一个长度的 所以一开始的s与e都是1 maxx也是a[1] 然后再求 从i=2开始 在这里注意 me永远是当前i 而ms则可能留在原地 可能直接等于i 判断条件就是当 ...

随机推荐

  1. vue element 表头添加斜线

    <template> <div class="app-container"> <el-table :data="tableData3&quo ...

  2. vue h5移动端禁止缩放

    在index.html里面写 <meta name="viewport" content="width=device-width, initial-scale=1. ...

  3. c#音乐播放器

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  4. ES6学习笔记(二):教你玩转类的继承和类的对象

    继承 程序中的继承: 子类可以继承父类的一些属性和方法 class Father { //父类 constructor () { } money () { console.log(100) } } c ...

  5. leetcode--js--Median of Two Sorted Arrays

     问题描述: There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of ...

  6. Objective-C编程 — 并行编程

    多线程 线程的基本概念 线程 (thread)是进程(process)A 内假想的持有 CPU 使用权的执行单位.一般情况下,一个进程 只有一个线程,但也可以创建多个线程并在进程中并行执行.应用在执行 ...

  7. python--虚拟环境的使用

    下载virtualenv # pip3 install virtualenv 创建虚拟环境(自定义虚拟环境名称为Aechery_env) # virtualenv -p python3 Archery ...

  8. 【STM32H7教程】第62章 STM32H7的MDMA,DMA2D和通用DMA性能比较

    完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第62章       STM32H7的MDMA,DMA2D和通 ...

  9. WebAPI中的定时处理-使用Quartz.Net

    借鉴: https://blog.csdn.net/lordwish/article/details/78926252 在最近的一篇文章中讲到了如何在web API中实现定时处理,采用的是比较原始的T ...

  10. 【WPF学习】第十八章 多点触控输入

    多点触控(multi-touch)是通过触摸屏幕与应用程序进行交互的一种方式.多点触控输入和更传统的基于笔(pen-based)的输入的区别是多点触控识别手势(gesture)——用户可移动多根手指以 ...