链接:https://www.nowcoder.com/acm/contest/145/C
来源:牛客网

C .题目描述

A binary string s of length N = 2n is given. You will perform the following operation n times :

- Choose one of the operators AND (&), OR (|) or XOR (^). Suppose the current string is S = s1s2...sk. Then, for all , replace s2i-1s2i with the result obtained by applying the operator to s2i-1 and s2i. For example, if we apply XOR to {1101} we get {01}.

After n operations, the string will have length 1.

There are 3n ways to choose the n operations in total. How many of these ways will give 1 as the only character of the final string.

输入描述:

The first line of input contains a single integer n (1 ≤ n ≤ 18).

The next line of input contains a single binary string s (|s| = 2

n

). All characters of s are either 0 or 1.

输出描述:

Output a single integer, the answer to the problem.
示例1

输入

复制

2
1001

输出

复制

4

说明

The sequences (XOR, OR), (XOR, AND), (OR, OR), (OR, AND) works.

题意 : 你有 3 种操作,每次处理相邻的两个字符,问最终会有多少种操作得到 1

思路分析 : 直接一个爆搜即可,稍加一点剪枝,可以水过去

题解给的正解是,先暴力处理一下最后4种状态,即 2^16 ,下面再搜的时候复杂度会降为 3^(n - 4)

代码示例 :

using namespace std;
#define ll long long
const int maxn = 3e5+5;
const int mod = 1e9+7;
const double eps = 1e-9;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f; int n, len;
char s[maxn];
int sum = 0;
int pp[30], arr[20][maxn]; void dfs(int c, int len){
if (len == 1) {
if (arr[c][1]) sum++;
return;
} for(int i = 0; i < 3; i++){
if (i == 0) {
int num = 0;
for(int j = 1; j <= len; j += 2){
arr[c+1][(j+1)/2] = arr[c][j]&arr[c][j+1];
if (arr[c+1][(j+1)/2]) num++;
}
dfs(c+1, len/2);
}
else if (i == 1){
int num = 0;
for(int j = 1; j <= len; j += 2){
arr[c+1][(j+1)/2] = arr[c][j]|arr[c][j+1];
if (arr[c+1][(j+1)/2]) num++;
}
dfs(c+1, len/2);
}
else {
int num = 0;
for(int j = 1; j <= len; j += 2){
arr[c+1][(j+1)/2] = arr[c][j]^arr[c][j+1];
if (arr[c+1][(j+1)/2]) num++;
}
dfs(c+1, len/2);
}
}
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
pp[0] = 1;
for(int i = 1; i <= 25; i++) pp[i] = pp[i-1]*2;
scanf("%d%s", &n, s+1);
len = 1;
for(int i = 1; i <= n; i++) len *= 2;
for(int i = 1; i <= len; i++) arr[1][i] = s[i]-'0'; dfs(1, len);
printf("%d\n", sum); return 0;
}

链接:https://www.nowcoder.com/acm/contest/145/E
来源:牛客网

E .题目描述

You love doing graph theory problems. You've recently stumbled upon a classical problem : Count the number of 4-cliques in an undirected graph.

Given an undirected simple graph G, a 4-clique of G is a set of 4 nodes such that all pairs of nodes in this set are directly connected by an edge.

This task would be too easy for you, wouldn't it? Thus, your task here is to find an undirected simple graph G with exactly k 4-cliques. Can you solve this task?

输入描述:

The first line of input contains a single integer k (1 ≤ k ≤ 10

6

).

输出描述:

On the first line, output two space-separated integers, n, m (1 ≤ n ≤ 75, 1 ≤ m ≤ n * (n - 1) / 2). On the next m lines, output two space-separated integers denoting an edge of the graph u, v (1 ≤ u, v ≤ n), where u and v are the endpoints of the edge.

Your graph must not contain any self-loops or multiple edges between the same pair of nodes. Any graph that has exactly k 4-cliques and satisfies the constraints will be accepted. It can be proven that a solution always exist under the given constraints.
示例1

输入

复制

1

输出

复制

4 6
1 2
1 3
1 4
2 3
2 4
4 3

说明

In the sample, the whole graph is a 4-clique.

题意 :输入一个K,代表要求你构造的图内团的大小为 4 的个数

思路分析 : 团的定义是什么:图中大小为4的点彼此之间互相连通,即大小为 4 的完全子图,我们首先可以用一些点两两之间彼此连边,此时得到的完全图是C(n, 4),但此时并不一定刚好等于 K ,因此可以最后余下几个点,用这几个点去和原先的点去连边, 假设某一个点练了X条边,则新产生的团为4 的个数为 C(X, 3),这个地方的处理可以用一个背包即可。 C(a, 3)+ C(b, 3)+ C(c, 3)+ C(d, 3)+ C(e, 3) = num

代码示例 :

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn = 1e5+5; int dp[10][maxn], path[10][maxn];
int C[75][5];
int num;
int n, m, cha;
void init() {
for(int i = 3; i <= 70; i++){
int x = i*(i-1)*(i-2);
C[i][3] = x/6; int x2 = i*(i-1)*(i-2)*(i-3);
C[i][4] = x2/24;
} for(int i = 4; i <= 70; i++){
if (C[i][4] > num) break;
n = i;
}
cha = num-C[n][4]; dp[0][0] = 1;
for(int i = 1; i <= 5; i++){
dp[i][0] = 1;
for(int j = cha; j >= 0; j--){
for(int k = 3; k <= n; k++){
if (dp[i][j]) continue;
if (C[k][3] > j) break;
if (dp[i-1][j-C[k][3]]) dp[i][j] = 1, path[i][j] = k;
}
}
}
} int f[10];
bool cmp(int a, int b){
return a>b;
}
int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout); cin >> num;
init(); m = n*(n-1)/2;
int an = n;
for(int i = 5; i >= 1; i--){
f[i] = path[i][cha];
cha = cha - C[f[i]][3];
m += f[i];
if (f[i]) an++;
}
sort(f+1, f+6, cmp); printf("%d %d\n", an, m);
for(int i = 1; i <= n; i++){
for(int j = i+1; j <= n; j++){
printf("%d %d\n", i, j);
}
}
for(int i = 1; i <= 5; i++){
for(int j = 1; j <= f[i]; j++){
printf("%d %d\n", n+i, j);
}
}
return 0;
}

链接:https://www.nowcoder.com/acm/contest/145/J

J . 题目描述

You have a n * m grid of characters, where each character is an English letter (lowercase or uppercase, which means there are a total of 52 different possible letters).

A nonempty subrectangle of the grid is called sudoku-like if for any row or column in the subrectangle, all the cells in it have distinct characters.

How many sudoku-like subrectangles of the grid are there?

输入描述:

The first line of input contains two space-separated integers n, m (1 ≤ n, m ≤ 1000).

The next n lines contain m characters each, denoting the characters of the grid. Each character is an English letter (which can be either uppercase or lowercase).

输出描述:

Output a single integer, the number of sudoku-like subrectangles.
示例1

输入

复制

2 3
AaA
caa

输出

复制

11

说明

For simplicity, denote the j-th character on the i-th row as (i, j).

For sample 1, there are 11 sudoku-like subrectangles. Denote a subrectangle
by (x

1

, y

1

, x

2

, y

2

), where (x

1

, y

1

) and (x

2

, y

2

) are the upper-left and lower-right coordinates of the subrectangle.

The sudoku-like subrectangles are (1, 1, 1, 1), (1, 2, 1, 2), (1, 3, 1, 3), (2, 1, 2, 1), (2, 2, 2, 2), (2, 3, 2, 3), (1, 1, 1, 2), (1, 2, 1, 3), (2, 1, 2, 2), (1, 1, 2, 1), (1, 3, 2, 3).
示例2

输入

复制

4 5
abcde
fGhij
klmno
pqrst

输出

复制

150

说明

For sample 2, the grid has 150 nonempty subrectangles, and all of them are sudoku-like.

题意 : 一个 n*m 的矩阵,求矩阵中子矩阵的个数,要求子矩阵中每行每列都没有相同的字母,求子矩阵的个数
思路分析 :
  首先预处理两个东西, le[i][j] 表示 从点 (i, j) 向左最多可以延伸的单位 ,up[i][j] 表示从点 (i, j) 最多可以向上延伸的单位
  len[i] 记录的是第 i 列的最大可以向上延伸的单位
代码示例 :
ll n, m;
char s[1005][1005];
ll mp[1005][1005];
ll up[1005][1005], le[1005][1005]; void init() {
for(ll j = 1; j <= m; j++){ // 列
ll num = 0; ll len = 0;
for(ll i = 1; i <= n; i++){ // 行
if (!(num & ((1ll)<<mp[i][j]))) {
num = num|((1ll)<<mp[i][j]);
len++;
}
else {
for(ll k = i-up[i-1][j]; k <= i-1; k++){
if (mp[k][j] == mp[i][j]) break;
len--;
ll x = (1ll)<<mp[k][j];
x = ~x;
num &= x;
}
}
up[i][j] = len;
}
} for(ll i = 1; i <= n; i++){
ll num = 0, len = 0;
for(ll j = 1; j <= m; j++){
if (!(num & (1ll)<<mp[i][j])){
num = num|((1ll)<<mp[i][j]);
len++;
}
else {
for(ll k = j-le[i][j-1]; k <= j-1; k++){
if (mp[i][k] == mp[i][j]) break;
len--;
ll x = (1ll)<<mp[i][k];
x = ~x;
num &= x;
}
}
le[i][j] = len;
}
}
} ll ans = 0;
ll len[100];
void solve() {
for(int j = 1; j <= m; j++){
memset(len, 0, sizeof(len));
for(int i = 1; i <= n; i++){
for(int k = 0; k < le[i][j]; k++){
len[k] = min(len[k]+1, up[i][j-k]);
if (k) len[k] = min(len[k], len[k-1]);
ans += len[k];
}
for(int k = le[i][j]; k <= 55; k++) len[k] = 0;
}
}
printf("%lld\n", ans);
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n >> m;
for(ll i = 1; i <= n; i++){
scanf("%s", s[i]+1);
}
for(ll i = 1; i <= n; i++){
for(ll j = 1; j <= m; j++){
if (s[i][j] >= 'a' && s[i][j] <= 'z') mp[i][j] = s[i][j]-'a';
else mp[i][j] = s[i][j]-'A'+26;
}
}
init();
solve();
return 0;
}
/*
4 4
afcd
bcda
dddd
abdc
*/

关于 le[i][j] 和 up[i][j] 两个数组,网上看到一个比较好的做法,很简便

    for(int i = 1; i <= n; i++){
memset(pos, 0, sizeof(pos));
for(int j = 1; j <= m; j++){
L[i][j] = min(L[i][j-1] + 1, j - pos[s[i][j]]);
pos[s[i][j]] = j;
}
} for(int j = 1; j <= m; j++){
memset(pos, 0, sizeof(pos));
for(int i = 1; i <= n; i++){
U[i][j] = min(U[i-1][j] + 1, i - pos[s[i][j]]);
pos[s[i][j]] = i;
}
}

le[i][j] 的值来源于两种:一种是左边的值 le[i][j-1] + 1, 另一种是与其是同一个字母的时候两者间的距离,很简洁

牛客暑期ACM多校 第七场的更多相关文章

  1. 2018牛客暑期ACM多校训练营第二场(有坑未填)

    第二场终于等来学弟 开始(被队友带飞)的开心(被虐)多校之旅 A   run A题是一个递推(dp?)+前缀和 因为看数据量比较大 就直接上前缀和了 一个比较简单的递推 没有太多难点 签到题 需要注意 ...

  2. 2018牛客暑期ACM多校训练营第一场(有坑未填)

    (重新组队后的第一场组队赛 也是和自己队友的一次磨合吧 这场比赛真的算是一个下马威吧……队友上手一看 啊这不是莫队嘛 然后开敲 敲完提交发现t了 在改完了若干个坑点后还是依然t(真是一个悲伤的故事)然 ...

  3. 牛客网暑期ACM多校训练营 第九场

    HPrefix Sum study from : https://blog.csdn.net/mitsuha_/article/details/81774727 k较小.分离x和k. 另外的可能:求a ...

  4. 牛客网暑期ACM多校训练营(第四场):A Ternary String(欧拉降幂)

    链接:牛客网暑期ACM多校训练营(第四场):A Ternary String 题意:给出一段数列 s,只包含 0.1.2 三种数.每秒在每个 2 后面会插入一个 1 ,每个 1 后面会插入一个 0,之 ...

  5. 牛客网暑期ACM多校训练营(第五场):F - take

    链接:牛客网暑期ACM多校训练营(第五场):F - take 题意: Kanade有n个盒子,第i个盒子有p [i]概率有一个d [i]大小的钻石. 起初,Kanade有一颗0号钻石.她将从第1到第n ...

  6. 牛客网 暑期ACM多校训练营(第二场)A.run-动态规划 or 递推?

    牛客网暑期ACM多校训练营(第二场) 水博客. A.run 题意就是一个人一秒可以走1步或者跑K步,不能连续跑2秒,他从0开始移动,移动到[L,R]的某一点就可以结束.问一共有多少种移动的方式. 个人 ...

  7. 牛客网 暑期ACM多校训练营(第一场)A.Monotonic Matrix-矩阵转化为格子路径的非降路径计数,Lindström-Gessel-Viennot引理-组合数学

    牛客网暑期ACM多校训练营(第一场) A.Monotonic Matrix 这个题就是给你一个n*m的矩阵,往里面填{0,1,2}这三种数,要求是Ai,j⩽Ai+1,j,Ai,j⩽Ai,j+1 ,问你 ...

  8. 牛客网暑期ACM多校训练营(第三场)H Diff-prime Pairs (贡献)

    牛客网暑期ACM多校训练营(第三场)H Diff-prime Pairs (贡献) 链接:https://ac.nowcoder.com/acm/contest/141/H来源:牛客网 Eddy ha ...

  9. 2018牛客网暑期ACM多校训练营(第二场)I- car ( 思维)

    2018牛客网暑期ACM多校训练营(第二场)I- car 链接:https://ac.nowcoder.com/acm/contest/140/I来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 ...

随机推荐

  1. 2018-8-10-C#-代码占用的空间

    title author date CreateTime categories C# 代码占用的空间 lindexi 2018-08-10 19:16:52 +0800 2018-2-13 17:23 ...

  2. H3C RIP协议概述

  3. UVA 12563 "Jin Ge Jin Qu hao" (背包)

    传送门 debug了好一会,突然发现,输出错了,emmm......... 明天再写debug历程: (PS:ipad debug是真的繁琐) 题意: 题解: 尽管题干中给的 t 的范围很大,但是 t ...

  4. H3C 路由表查找规则(1)

  5. dotnet core 发布只有一个 exe 的方法

    在 dotnet core 发布的时候,会使用很多文件,这样发给小伙伴使用的时候不是很清真,本文告诉大家一个非官方的方法通过 warp 将多个文件打包为一个文件 和之前相同的方式发布一个 dotnet ...

  6. 实体Bean

    持久化实体管理EntityManager EntityManager 在Java persistence规范中,EntityManager是为所有持久化操作提供服务的中枢.Persistence co ...

  7. ZR1153

    ZR1153 首先我们可以发现一个比较简单的容斥做法 直接暴力枚举\(2^m\)个限制强制不合法,算贡献 注意如果两个限制冲突那么答案为0 直接暴力差分就好了 这样就有了快乐的\(30\)分了 接下来 ...

  8. Linux 内核 EISA 总线

    扩展 ISA (EISA) 总线是一个对 ISA 的 32-位 扩展, 带有一个兼容的接口连接器; ISA 设备板可被插入一个 EISA 连接器. 增加的线在 ISA 接触之下被连接. 如同 PCI ...

  9. 第四阶段:2.从零打造一款工具APP产品

    1.APP:安卓跟IOS(根据目标用户选择 ,那个先做哪个后做,APP的通过需要审核,其中也有很多技巧). 同时注意设计模版的使用(提高效率).竞品分析也是少不了的.

  10. PRML第一章读书小结

    PRML第一章读书小结     第一章用例子出发,较为简单的引入了概率论.模型.决策.损失.信息论的问题,作为机器学习从业者,读PRML除了巩固已有基础,还受到了很多新的启发,下面将我收到的启发总结如 ...