6358. 【NOIP2019模拟2019.9.15】小ω的仙人掌
题目
题目大意
给你一串二元组\((a_i,b_i)\)的数列。
求最小的区间\([l,r]\)长度,满足\([l,r]\)中的每个二元组选或不选,使得\(\sum a_i=w\)且\(\sum b_i\leq k\)
思考历程
想了好久,想来想去都是一个背包……
最终决定打暴力……
正解
先说说GMH大爷的神奇解法。
首先是二分答案\(ans\),转化成判定问题。然后在数列中每\(ans\)个点设置一个观测点。
以每个观测点为中心,向左和向右背包,然后合并。
然而正解并不需要一个\(\log\)
考虑双指针,就是记一个当前的最佳答案\(ans\),后面的区间长度都要小于\(ans\)。脑补一下这个过程,其实这就是一个队列,只需要支持左边出右边入的队列。
但是背包问题不满足可减性。于是就有个非常骚的解法:
把这个队列用两个栈来代替,栈顶分别为队头和队尾。
加入的时候,就在第二个栈的栈顶加入;弹出的时候,就直接弹出第一个栈的栈顶。
如果第一个栈为空,那就将第二个栈里的东西倒过来放到第一个栈中,然后暴力重构。
每个元素只会暴力重构一次,所以不会时间超限。
代码
using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cassert>
#define N 10010
#define maxW 5010
inline int input(){
char ch=getchar();
while (ch<'0' || '9'<ch)
ch=getchar();
int x=0;
do{
x=x*10+ch-'0';
ch=getchar();
}
while ('0'<=ch && ch<='9');
return x;
}
int n,W,K,a[N],b[N];
int f[N][maxW];
int st1[N],top1,st2[N],top2;
inline void update(int &a,int b){a>b?a=b:0;}
inline bool ok(int j){
int jj=st1[top1];
for (int k=0;k<=W;++k)
if (f[jj][k]+f[j][W-k]<=K)
return 1;
return 0;
}
int main(){
freopen("cactus.in","r",stdin);
freopen("cactus.out","w",stdout);
n=input(),W=input(),K=input();
for (int i=1;i<=n;++i)
a[i]=input(),b[i]=input();
int ans=n+1;
f[0][0]=0;
for (int i=1;i<=W;++i)
f[0][i]=K+1;
for (int i=1,j=1;i<=n;++i){
if (ok(st2[top2]))
ans=j-i;
for (;j<=n && j-i+1<ans;++j){
st2[++top2]=j;
int lst=st2[top2-1];
memcpy(f[j],f[lst],sizeof(int)*(W+1));
for (int k=0;k+a[j]<=W;++k)
update(f[j][k+a[j]],f[lst][k]+b[j]);
if (ok(j))
ans=j-i+1;
}
if (!top1){
for (int j=top2;j>=1;--j)
st1[++top1]=st2[j];
top2=0;
for (int j=1;j<top1;++j){
int now=st1[j],lst=st1[j-1];
memcpy(f[now],f[lst],sizeof(int)*(W+1));
for (int k=0;k+a[now]<=W;++k)
update(f[now][k+a[now]],f[lst][k]+b[now]);
}
}
top1--;
}
if (ans==n+1)
printf("-1\n");
else
printf("%d\n",ans);
return 0;
}
总结
还有这么骚的栈操作……
这告诉我们有时候维护队列的东西可以用两个栈来搞。
6358. 【NOIP2019模拟2019.9.15】小ω的仙人掌的更多相关文章
- 6359. 【NOIP2019模拟2019.9.15】小ω的树(tree)(定期重构)
题目描述 题解 qy的毒瘤题 CSP搞这种码农题当场手撕出题人 先按照边权从大到小建重构树,然后40%暴力修改+查找即可 100%可以定期重构+平衡规划,每次把B个询问拉出来建虚树,在虚树上暴力维护每 ...
- [JZOJ6359] 【NOIP2019模拟2019.9.15】小ω的树
题目 题目大意 给你一棵树,带点权和边权. 要你选择一个联通子图,使得点权和乘最小边权最大. 支持修改点权操作. 思考历程 显然,最先想到的当然是重构树了-- 重构树就是在做最大生成树的时候,当两个联 ...
- 6389. 【NOIP2019模拟2019.10.26】小w学图论
题目描述 题解 之前做过一次 假设图建好了,设g[i]表示i->j(i<j)的个数 那么ans=∏(n-g[i]),因为连出去的必定会构成一个完全图,颜色互不相同 从n~1染色,点i的方案 ...
- 6380. 【NOIP2019模拟2019.10.06】小w与最长路(path)
题目 题目大意 给你一棵树,对于每一条边,求删去这条边之后,再用一条边(自己定)连接两个连通块,形成的树的直径最小是多少. 正解 首先,将这棵树的直径给找出来.显然,如果删去的边不在直径上,那么答案就 ...
- 6424. 【NOIP2019模拟2019.11.13】我的订书机之恋
题目描述 Description Input Output Sample Input 见下载 Sample Output 见下载 Data Constraint 题解 lj题卡线段树 求出每个右端点往 ...
- 6407. 【NOIP2019模拟11.05】小 D 与随机
题目描述 Description Input 第一行两个个整数 n,k. 之后 n -1 行,第 i 行两个整数 ui, vi, 表示一条树边. 保证输入的数据构成一棵树. Output 一行一个数表 ...
- 6392. 【NOIP2019模拟2019.10.26】僵尸
题目描述 题解 吼题但题解怎么这么迷 考虑一种和题解不同的做法(理解) 先把僵尸离散化,h相同的钦(ying)点一个大小 (可以发现这样每种情况只会被算正好一次) 计算完全被占领的方案,然后1-方案/ ...
- 6364. 【NOIP2019模拟2019.9.20】养马
题目描述 题解 一种显然的水法:max(0,-(点权-边权之和*2)) 这样会挂是因为在中途体力值可能会更小,所以考虑求走完每棵子树所需的至少体力值 考虑从子树往上推求出当前点的答案 设每棵子树从根往 ...
- 6362. 【NOIP2019模拟2019.9.18】数星星
题目描述 题解 一种好想/好写/跑得比**记者还快的做法: 对所有询问排序,按照R递增的顺序来处理 维护每个点最后一次被覆盖的时间,显然当前右端点为R时的答案为所有时间≥L的点的权值之和 LCT随便覆 ...
随机推荐
- 关于js中Ajax的同步、异步使用
下面一个简单的例子,说明前后端交互中,Ajax同步和异步的使用 1.设置简单的一个div,包含触发事件 CompanyType() <div> <input type="h ...
- 谈谈你对本次2018级ACM新手赛的体会
第一次参加这类比赛,挺有趣的,在现场磨了四个小时也没有全写出来,收获还是挺大的,至少意识到自己是能做到这些的(笑 今后也会多多努力
- Ubuntu 18.04 安装 python3.7
Ubuntu 18.04系统内置了Python 3.6和Python 2.7版本,以下是在Ubuntu 18.04系统中安装Python 3.7版本的方法. 1. 执行所有升级# sudo apt u ...
- elementUI表格行的点击事件,点击表格,拿到当前行的数据
1.绑定事件 2.定义事件 3.点击表格某行的时候,拿到数据]
- delphi 文件操作(信息获取)
delphi获取Exe文件版本信息的函数 Type TFileVersionInfo = Record FixedInfo:TVSFixedFileInfo; {版本信息} CompanyName:S ...
- BZOJ 2597: [Wc2007]剪刀石头布(费用流)
传送门 解题思路 考虑全集-不能构成三元环的个数.如果三个点不能构成三元环,一定有一个点的入度为\(2\),继续扩展,如果一个点的度数为\(3\),则会失去3个三元环.对于一个点来说,它所产生的不能构 ...
- Linux源码与编译出的目标文件汇编代码的一致性问题
start_kernel是内核启动时比较重要的一个函数,然而我发现一个问题,我编译出来的目标文件中的汇编代码与C源码并不完全对应,这是怎么一回事呢? asmlinkage void __init st ...
- CUDA编程入门笔记
1.线程块(block)是独立执行的,在执行的过程中线程块之间互不干扰,因此它们的执行顺序是随机的 2.同一线程块中的线程可以通过访问共享内存(shared memory)或者通过同步函数__sync ...
- Java 序列化和反序列化(一)Serializable 使用场景
目录 Java 序列化和反序列化(一)Serializable 使用场景 1. 最简单的使用:Serializable 接口 2. 序列化 ID 的问题 3. 静态字段不会序列化 4. 屏蔽字段:tr ...
- JDK8新特性之接口默认方法与静态方法
接口默认方法与静态方法 有这样一些场景,如果一个接口要添加一个方法,那所有的接口实现类都要去实现,而某些实现类根本就不需要实现这个方法也要写一个空实现,所以接口默认方法就是为了解决这个问题. 接口静态 ...