Problem: time series prediction

The nonlinear autoregressive exogenous model: The Nonlinear autoregressive exogenous (NARX) model, which predicts the current value of a time series based upon its previous values as well as the current and past values of multiple driving (exogenous) series.

However, few NARX models can capture the long-term temporal dependencies appropriately and select the relevant driving series to make a prediction.

2 issues:

1. capture the long-term temporal dependencies

2. select the relevant driving series to make a prediction

We propose a dual-stage attention-based RNN to address these 2 issues.

1. first stage: input attention mechanism to extract relevant driving series.

2. second stage: temporal attention mechanism.

attention-based encoder-decoder networks for time series prediction/ LSTM/ GRU

One problem with encoder-decoder networks is that their performance will deteriorate rapidly as the length of input sequence increases.

Contribution: the two-stage attention mechanism. input attention for driving series and temporal attention for all time stamps.

input attention can select the relevant driving series.

temporal attention capture temporal information.

Supplementary knowledge:

1. what is driving series?

PP: A dual-stage attention-based recurrent neural network for time series prediction的更多相关文章

  1. 论文笔记:(2019)GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud

    目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 ...

  2. (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION

    LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are th ...

  3. (zhuan) LSTM Neural Network for Time Series Prediction

    LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...

  4. (zhuan) Recurrent Neural Network

    Recurrent Neural Network 2016年07月01日  Deep learning  Deep learning 字数:24235   this blog from: http:/ ...

  5. 论文翻译:2021_A New Real-Time Noise Suppression Algorithm for Far-Field Speech Communication Based on Recurrent Neural Network

    论文地址:一种新的基于循环神经网络的远场语音通信实时噪声抑制算法 引用格式:Chen B, Zhou Y, Ma Y, et al. A New Real-Time Noise Suppression ...

  6. 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks

    ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   ...

  7. 论文翻译:2020_WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement

    论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et ...

  8. Recurrent Neural Network系列1--RNN(循环神经网络)概述

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  9. Recurrent Neural Network系列2--利用Python,Theano实现RNN

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

随机推荐

  1. js中如果遇到低版本安卓设备调用setTimeout不生效解决办法

    工作中会遇到低版本安卓设备调用setTimeout不生效,既不会报错,里面的函数也不会执行,这里po一个解决办法,如果不执行则执行安卓自己封装的原生的setTimeout方法:sdk.setTimeo ...

  2. clr via c# 接口

    1,常用接口及其定义 public interface IDisposable{ void Dispose(); } public interface IEnumerable}{ IEnumerato ...

  3. SpringCloud入门学习

    我相信,如果小伙伴们能来到这里,肯定对微服务有一定的认识. 我们之前创建web项目的时候,常见的有两种方式: 1).创建一个war包,然后放在servlet容器中运行(比如Tomcat等); 2).使 ...

  4. 多字节与Unicode

    编码知识 一.Unicode与多字节(ANSI ) (1)Windows中,Unicode也称为宽字节,多字节也称为窄字节; VS中默认使用Unicode编码,在项目属性>>配置属性> ...

  5. fatal: HttpRequestException encountered

    报错:fatal: HttpRequestException encountered 解决方法 Github 禁用了TLS v1.0 and v1.1,必须更新Windows的git凭证管理器,才行. ...

  6. Serverless Component 介绍和使用指南

    Serverless Component 是什么,我怎样使用它? Serverless Components 的目标是什么? 我们希望通过 Serverless Components 让广大开发者更加 ...

  7. 离线安装PostgreSQL11.6

    因为客户最近有一台CentOS7的虚拟机,但是没有联网,需要安装离线安装PostgreSQL 1.首先去官网下载离线安装包 https://www.postgresql.org/download/ 说 ...

  8. XSY3163

    题意 \(n\)阶无向图,带边权,边有黑白两色,问有多少棵白边恰好为\(k\)的树,边权最小 做法 先二分出给白边的附加权值,然后矩阵树讨论同权值块即可 题外话 乍一看好神仙,然后..

  9. 吴裕雄--天生自然HADOOP操作实验学习笔记:mapreduce和yarn命令

    实验目的 了解集群运行的原理 学习mapred和yarn脚本原理 学习使用Hadoop命令提交mapreduce程序 学习对mapred.yarn脚本进行基本操作 实验原理 1.hadoop的shel ...

  10. Linux分区类型EXT2、EXT3、EXT4详解

    一.EXT2与EXT3 Linux之前缺省情况下使用的文件系统为Ext2,ext2文件系统的确高效稳定.但是,随着Linux系统在关键业务中的应用,Linux文件系统的弱点也渐渐显露出来了:其中系统缺 ...