1.. 并查集的应用场景
  • 查看"网络"中节点的连接状态,这里的网络是广义上的网络
  • 数学中的集合类的实现
 
2.. 并查集所支持的操作
  • 对于一组数据,并查集主要支持两种操作:合并两个数据、判断两个数据是否属于同一集合(两个数据是否连接)
 
3.. 定义并查集的接口
  • 并查集的接口业务逻辑如下:
  • public interface UF {
    
        int getSize();
    
        boolean isConnected(int p, int q);
    
        void unionElements(int p, int q);
    
    }
4.. 实现并查集
  • 第一版并查集Quick Find,业务逻辑如下:
  • public class UnionFind1 implements UF {
    
        private int[] id;
    
        public UnionFind1(int size) {
    
            id = new int[size];
    for (int i = 0; i < id.length; i++) {
    id[i] = i;
    }
    } // 实现getSize方法
    @Override
    public int getSize() {
    return id.length;
    } private int find(int p) { if (p < 0 || p >= id.length) {
    throw new IllegalArgumentException("p is out of bound.");
    }
    return id[p];
    } // 实现isConnected方法,查看元素p与元素q是否所属同一个集合
    @Override
    public boolean isConnected(int p, int q) {
    return id[p] == id[q];
    } // 实现unionElements方法,合并元素p和元素q所属集合
    @Override
    public void unionElements(int p, int q){ int pID = find(p);
    int qID = find(q); if(pID == qID){
    return;
    }
    for(int i=0;i<id.length;i++){
    if(id[i]==pID){
    id[i] = qID;
    }
    }
    }
    }
  • Quick FInd的时间复杂度分析
  • 第二版并查集Quick Union,业务逻辑如下:
  • public class UnionFind2 implements UF {
    
        private int[] parent;
    
        public UnionFind2(int size) {
    
            parent = new int[size];
    for (int i = 0; i < size; i++) {
    parent[i] = i;
    }
    } @Override
    public int getSize() {
    return parent.length;
    } private int find(int p) { if (p < 0 || p >= parent.length) {
    throw new IllegalArgumentException("p is out of bound.");
    }
    while (p != parent[p]) {
    p = parent[p];
    }
    return p;
    } // 实现isConnected方法,判断元素p与元素q是否同属一个集合
    @Override
    public boolean isConnected(int p, int q) {
    return parent[p] == parent[q];
    } // 实现unionElements方法,合并元素p和元素q所在集合
    @Override
    public void unionElements(int p, int q) { int pRoot = find(p);
    int qRoot = find(q); if (pRoot == qRoot) {
    return;
    }
    parent[pRoot] = qRoot;
    }
    }
  • Quick Union的时间复杂度分析
  • isConnected     O(h)   其中,h为树的高度
    unionElements O(h)
  • 测试Quick Find和Quick Union的性能
  • 测试的业务逻辑如下:
  • import java.util.Random;
    
    public class Main {
    
        private static double testUF(UF uf, int m) {
    
            int size = uf.getSize();
    Random random = new Random();
    long startTime = System.nanoTime(); for (int i = 0; i < m; i++) {
    int a = random.nextInt(size);
    int b = random.nextInt(size);
    uf.unionElements(a, b);
    } for (int i = 0; i < m; i++) {
    int a = random.nextInt(size);
    int b = random.nextInt(size);
    uf.isConnected(a, b);
    } long endTime = System.nanoTime();
    return (endTime - startTime) / 1000000000.0;
    } public static void main(String[] args) {
    int size = 100000;
    int m = 10000; UnionFind1 uf1 = new UnionFind1(size);
    double time1 = testUF(uf1, m);
    System.out.println("Quick Find, time: " + time1 + " s"); UnionFind2 uf2 = new UnionFind2(size);
    double time2 = testUF(uf2, m);
    System.out.println("Quick Union, time: " + time2 + " s");
    }
    }
  • 输出结果:
  • Quick Find, time: 0.272248873 s
    Quick Union, time: 0.001273318 s
5.. Quick Union的优化
  • 对unionElements方法进行优化,使元素少的节点指向元素多的节点
  • 优化后的业务逻辑如下:
  • public class UnionFind3 implements UF {
    
        private int[] parent;
    private int[] sz; public UnionFind3(int size) { parent = new int[size];
    sz = new int[size]; for (int i = 0; i < size; i++) {
    parent[i] = i;
    sz[i] = 1;
    }
    } @Override
    public int getSize() {
    return parent.length;
    } private int find(int p) { if (p < 0 || p >= parent.length) {
    throw new IllegalArgumentException("p is out of bound.");
    }
    while (p != parent[p]) {
    p = parent[p];
    }
    return p;
    } // 实现isConnected方法,判断元素p与元素q是否同属一个集合
    @Override
    public boolean isConnected(int p, int q) {
    return parent[p] == parent[q];
    } // 实现unionElements方法,合并元素p和元素q所在集合
    @Override
    public void unionElements(int p, int q) { int pRoot = find(p);
    int qRoot = find(q); if (pRoot == qRoot) {
    return;
    }
    if (sz[pRoot] < sz[qRoot]) {
    parent[pRoot] = qRoot;
    sz[qRoot] += sz[pRoot];
    }else{
    parent[qRoot] = pRoot;
    sz[pRoot]+=sz[qRoot];
    }
    }
    }
  • 对unionElements方法进行优化,使深度浅节点指向深度更深的节点
  • 优化后的业务逻辑如下:
  • public class UnionFind4 implements UF {
    
        private int[] parent;
    private int[] rank; public UnionFind4(int size) { parent = new int[size];
    rank = new int[size]; for (int i = 0; i < size; i++) {
    parent[i] = i;
    rank[i] = 1;
    }
    } @Override
    public int getSize() {
    return parent.length;
    } private int find(int p) { if (p < 0 || p >= parent.length) {
    throw new IllegalArgumentException("p is out of bound.");
    }
    while (p != parent[p]) {
    p = parent[p];
    }
    return p;
    } // 实现isConnected方法,判断元素p与元素q是否同属一个集合
    @Override
    public boolean isConnected(int p, int q) {
    return parent[p] == parent[q];
    } // 实现unionElements方法,合并元素p和元素q所在集合
    @Override
    public void unionElements(int p, int q) { int pRoot = find(p);
    int qRoot = find(q); if (pRoot == qRoot) {
    return;
    }
    if (rank[pRoot] < rank[qRoot]) {
    parent[pRoot] = qRoot;
    } else if (rank[qRoot] < rank[pRoot]) {
    parent[qRoot] = pRoot;
    } else {
    parent[pRoot] = qRoot;
    rank[qRoot] += 1;
    }
    }
    }
  • 对find方法进行优化,实现简单路径压缩(非递归实现)
  • 优化后业务逻辑如下
  • public class UnionFind5 implements UF {
    
        private int[] parent;
    private int[] rank; public UnionFind5(int size) { parent = new int[size];
    rank = new int[size]; for (int i = 0; i < size; i++) {
    parent[i] = i;
    rank[i] = 1;
    }
    } @Override
    public int getSize() {
    return parent.length;
    } private int find(int p) { if (p < 0 || p >= parent.length) {
    throw new IllegalArgumentException("p is out of bound.");
    }
    while (p != parent[p]) {
    parent[p] = parent[parent[p]]; // 优化了这里
    p = parent[p];
    }
    return p;
    } // 实现isConnected方法,判断元素p与元素q是否同属一个集合
    @Override
    public boolean isConnected(int p, int q) {
    return parent[p] == parent[q];
    } // 实现unionElements方法,合并元素p和元素q所在集合
    @Override
    public void unionElements(int p, int q) { int pRoot = find(p);
    int qRoot = find(q); if (pRoot == qRoot) {
    return;
    }
    if (rank[pRoot] < rank[qRoot]) {
    parent[pRoot] = qRoot;
    } else if (rank[qRoot] < rank[pRoot]) {
    parent[qRoot] = pRoot;
    } else {
    parent[pRoot] = qRoot;
    rank[qRoot] += 1;
    }
    }
    }
  • 再次优化find方法,实现终极路径压缩(递归实现)
  • public class UnionFind6 implements UF {
    
        private int[] parent;
    private int[] rank; public UnionFind6(int size) { parent = new int[size];
    rank = new int[size]; for (int i = 0; i < size; i++) {
    parent[i] = i;
    rank[i] = 1;
    }
    } @Override
    public int getSize() {
    return parent.length;
    } private int find(int p) { if (p < 0 || p >= parent.length) {
    throw new IllegalArgumentException("p is out of bound.");
    }
    if (p != parent[p]) {
    parent[p] = find(parent[p]); // 优化了这里
    }
    return parent[p];
    } // 实现isConnected方法,判断元素p与元素q是否同属一个集合
    @Override
    public boolean isConnected(int p, int q) {
    return parent[p] == parent[q];
    } // 实现unionElements方法,合并元素p和元素q所在集合
    @Override
    public void unionElements(int p, int q) { int pRoot = find(p);
    int qRoot = find(q); if (pRoot == qRoot) {
    return;
    }
    if (rank[pRoot] < rank[qRoot]) {
    parent[pRoot] = qRoot;
    } else if (rank[qRoot] < rank[pRoot]) {
    parent[qRoot] = pRoot;
    } else {
    parent[pRoot] = qRoot;
    rank[qRoot] += 1;
    }
    }
    }

第三十一篇 玩转数据结构——并查集(Union Find)的更多相关文章

  1. 第三十三篇 玩转数据结构——红黑树(Read Black Tree)

    1.. 图解2-3树维持绝对平衡的原理: 2.. 红黑树与2-3树是等价的 3.. 红黑树的特点 简要概括如下: 所有节点非黑即红:根节点为黑:NULL节点为黑:红节点孩子为黑:黑平衡 4.. 实现红 ...

  2. 第三十篇 玩转数据结构——字典树(Trie)

          1.. Trie通常被称为"字典树"或"前缀树" Trie的形象化描述如下图: Trie的优势和适用场景 2.. 实现Trie 实现Trie的业务无 ...

  3. 算法手记 之 数据结构(并查集详解)(POJ1703)

    <ACM/ICPC算法训练教程>读书笔记-这一次补上并查集的部分.将对并查集的思想进行详细阐述,并附上本人AC掉POJ1703的Code. 在一些有N个元素的集合应用问题中,通常会将每个元 ...

  4. ACM数据结构-并查集

    ACM数据结构-并查集   并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合 ...

  5. 【题解】P2024 [NOI2001]食物链 - 数据结构 - 并查集

    P2024 [NOI2001]食物链 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 动物王国中有三类动物 \(A,B ...

  6. 图论&数据结构——并查集

    Wikioi 4246 NOIP模拟赛Day2T1 奶牛的身高  题目描述 Description 奶牛们在FJ的养育下茁壮成长.这天,FJ给了奶牛Bessie一个任务,去看看每个奶牛场中若干只奶牛的 ...

  7. 《挑战程序设计竞赛》2.4 数据结构-并查集 POJ1182 2236 1703 AOJ2170

    POJ1182 http://poj.org/problem?id=1182 题目 难得的中文题... 食物链 Time Limit: 1000MS Memory Limit: 10000K Tota ...

  8. 第三十四篇 玩转数据结构——哈希表(HashTable)

    1.. 整型哈希函数的设计 小范围正整数直接使用 小范围负整数整体进行偏移 大整数,通常做法是"模一个素数"   2.. 浮点型哈希函数的设计 转成整型进行处理   3.. 字符串 ...

  9. 第三十二篇 玩转数据结构——AVL树(AVL Tree)

          1.. 平衡二叉树 平衡二叉树要求,对于任意一个节点,左子树和右子树的高度差不能超过1. 平衡二叉树的高度和节点数量之间的关系也是O(logn) 为二叉树标注节点高度并计算平衡因子 AVL ...

随机推荐

  1. C#中调用Windows系统服务exe程序的工具类与重启服务的流程

    场景 使用C#编写的Windows服务程序,在Winform中进行调用. 常用工具类方法检测服务是否存在或者安装,获取服务状态,启动服务,停止服务的方法. 以在Winform中重启服务为例. 注: 博 ...

  2. Java各种类

    1.Object类 equals方法 2.Date类 构造方法 成员方法 DateFormat类 Calendar类 3.System类 StringBuilder原理 构造方法 toString方法 ...

  3. SQL server安装时显示重启计算机失败问题解决办法

    前几天在装SQL server2016的时候,一直显示重启计算机失败; 网上的方法也找来用了,但是重启完还是同样的问题,试了很多种方法,最后在一次测试中点关机的时候不小心点成了重启(win10有个毛病 ...

  4. Docker+Nginx+Tomcat实现负载均衡

    环境检测: 1.Docker没有安装的小伙伴请查看https://www.cnblogs.com/niuniu0108/p/12372531.html 2.没有创建Nginx容器的小伙伴请查看http ...

  5. springMVC项目配置文件

    一.springMVC项目配置文件 1.web.xml文件全局配置 <servlet> <servlet-name> dispatcher </servlet-name& ...

  6. HDU - 1159 Common Subsequence (最长公共子序列)

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. ...

  7. cli4适配移动端

    1.首先在项目中安装以下依赖 npm install px2rem-loader --savenpm install amfe-flexible --savenpm install postcss-p ...

  8. C# WPF过渡效果实现(C# WPF Material Design UI: Transitions)

    时间如流水,只能流去不流回! 点赞再看,养成习惯,这是您给我创作的动力! 本文 Dotnet9 https://dotnet9.com 已收录,站长乐于分享dotnet相关技术,比如Winform.W ...

  9. numpy学习(四)

    练习篇(Part 4) 41. How to sum a small array faster than np.sum? (★★☆) arr = np.arange(10) print(np.add. ...

  10. MongoDB的安装问题

    Mongo的安装与启动: npm install mongodb -g MongoDB高性能.开源.无模式的文档型数据库,它基于分布式文件存储.介于关系数据库和非关系数据库之间的一种产品.其最大特点: ...