FFT及其框图实现

\(FFT\)的全称为快速傅里叶变换,但是\(FFT\)并不是一种变换,而是实现\(DFT\)的一种快速算法。当\(N\)比较大时,使用\(FFT\)可大大减少进行\(DFT\)变换的计算量。

\(N\)点的\(DFT\)所需的计算量为:
\[
X[k]=\sum_{n=0}^{N-1}x[n]W_N^{kn}
\]
乘法:\(N^2\)次,加法:\(N(N-1)\)次。每当\(N\)提高一倍,计算量增大四倍。

基\(2\)时域抽取

假设有一长度为\(2N\)的有限长序列\(x[n]\),现对其进行\(DFT\)变换,现有一算法可以将\(2N\)点的\(DFT\)计算降为\(N\)的\(DFT\)计算,记\(g[n]\)为\(x[n]\)的下标为偶数时的序列,即\(g[n]=x[2n],0\leq n \leq N-1\),记\(v[n]\)为\(x[n]\)的下标为奇数时的序列,即\(v[n]=x[2n+1],0\leq n \leq N-1\),则
\[
\begin{aligned}
X[k]&=\sum_{n=0}^{2N-1}x[n]W_{2N}^{kn}\\
&=\sum_{n=0}^{N-1}x[2n]W_{2N}^{k2n}+\sum_{n=0}^{N-1}x[2n+1]W_{2N}^{k(2n+1)} \\
&=\sum_{n=0}^{N-1}g[n]W_N^{kn}+W_{2N}^k\sum_{n=0}^{N-1}v[n]W_N^{kn} \\
&=G[<k>_N]+W_{2N}^{k}V[<k>_N], 0\leq k \leq 2N-1
\end{aligned}
\]
当\(0 \leq k \leq N-1\)时
\[
X[k]=G[k]+W_{2N}^kV[k]
\]
当\(N \leq k \leq 2N-1\)时
\[
X[k]=G[<k>_N]+W_{2N}^{k}V[<k>_N]\xrightarrow{k=m+N}G[m]-W_{2N}^{m}V[m], 0\leq m \leq N-1
\]
其中\(g[n]\)和\(v[n]\)的\(DFT\)都是\(N\)点的。

两个\(N\)点的\(DFT\)的运算量(以乘法为例)为\(2N^2\),而一个\(2N\)点的\(DFT\)运算量为\(4N^2\),计算量减少了一半!如果\(N=2^r\),则可以一直降下去,从而大大的减少了计算量。通过计算,可以知道此时的计算量为:乘法:\(\dfrac{N}{2}log_2N\),加法:\(Nlog_2N\)。

下面以8点的\(DFT\)为例,其实现框图为:

基\(2\)频域抽取

依然对于\(2N\)点的序列\(x[n]\)进行\(DFT\)计算,这次将\(x[n]\)分为前后两部分,即\(g[n]\)为\(x[n]\)的前\(N\)个点,即\(g[n]=x[n],0 \leq n \leq N-1\),\(v[n]\)为\(x[n]\)的后\(N\)个点,即\(v[n]=x[n+N],0\leq n\leq N-1\),则:
\[
\begin{aligned}
X[k]&=\sum_{n=0}^{2N-1}x[n]W_{2N}^{kn}\\
&=\sum_{n=0}^{N-1}x[n]W_{2N}^{kn}+\sum_{n=N}^{2N-1}x[n]W_{2N}^{kn} \\
&=\sum_{n=0}^{N-1}x[n]W_{2N}^{kn}+\sum_{m=0}^{N-1}x[m+N]W_{2N}^{k(m+N)}\\
&=\sum_{n=0}^{N-1}g[n]W_{2N}^{kn}+(-1)^k\sum_{n=0}^{N-1}v[n]W_{2N}^{kn}
\end{aligned}
\]
对其进行频域抽取
\[
X[2r]=\sum_{n=0}^{N-1}g[n]W_{2N}^{2rn}+\sum_{n=0}^{N-1}v[n]W_{2N}^{2rn}=G[k]+V[k],0\leq r \leq N-1
\]
\[
X[2r+1]=\sum_{n=0}^{N-1}g[n]W_{2N}^{(2r+1)n}-\sum_{n=0}^{N-1}v[n]W_{2N}^{(2r+1)n}=W_{2N}^{n}(G[k]-V[k])
\]
该算法也将\(2N\)点的\(DFT\)降为了2个\(N\)点的\(DFT\)。

将上面时域抽取的实现框图中所有的\(x[n]\)换成\(X[k]\),然后所有箭头反向,即输入变输出,输出变输入,得到的框图就是频域抽取实现的框图。

15 FFT及其框图实现的更多相关文章

  1. FFT常数优化(共轭优化)

    最近闲着无聊研究了下\(FFT\)的常数优化,大概就是各种\(3\)次变\(2or1.5\)次之类的,不过没见过啥题卡这个的吧. 关于\(FFT\)可以看这里:浅谈FFT&NTT. 关于复数 ...

  2. 任意模数FFT

    任意模数FFT 这是一个神奇的魔法,但是和往常一样,在这之前,先 \(\texttt{orz}\ \color{orange}{\texttt{matthew99}}\) 问题描述 给定 2 个多项式 ...

  3. hdu6088 组合数+反演+拆系数fft

    题意:两个人van石头剪子布的游戏一共n盘,假设A赢了a盘,B赢了b盘,那么得分是gcd(a,b),求得分的期望*\(3^{2*n}\) 题解:根据题意很明显有\(ans=3^{n}*\sum_{a= ...

  4. HNOI2019 白兔之舞 dance

    HNOI2019 白兔之舞 dance 显然\(n=3\)就是\(n=1\)的扩展版本,先来看看\(n=1\)怎么做. 令\(W=w[1][1]\),显然答案是:\(ans_t=\sum_{i\mod ...

  5. AC620教程 第十五节 8位7段数码管驱动设计与验证

    本章导读 电子系统中常用的显示设备有数码管.LCD液晶以及VGA显示器等.其中数码管又可分为段式显示(7段.米字型等)以及点阵显示(8*8.16*16等),LCD液晶的应用可以分为字符式液晶(1602 ...

  6. 【JZOJ6246】【20190627】B

    题目 求逆续对个数为\(k\)的\(n\)阶排列个数\(mod \ 1e9+7\) $1 \le n  ,  k \le 10^5 $ 题解 $f_{i,j} = \sum_{k=0}^{i-1} f ...

  7. Codechef BINOMSUM

    题意:(复制sunset的)有\(T\)天,每天有\(K\)个小时,第\(i\)天有\(D+i−1\)道菜,第一个小时你选择\(L\)道菜吃,接下来每个小时你可以选择吃一道菜或者选择\(A\)个活动中 ...

  8. 5.15 省选模拟赛 T1 点分治 FFT

    LINK:5.15 T1 对于60分的暴力 都很水 就不一一赘述了. 由于是询问所有点的这种信息 确实不太会. 想了一下 如果只是询问子树内的话 dsu on tree还是可以做的. 可以自己思考一下 ...

  9. [2016北京集训试题15]项链-[FFT]

    Description Solution 设y[i+k]=y[i]+n. 由于我们要最优解,则假如将x[i]和y[σ[i]]连线的话,线是一定不会交叉的. 所以,$ans=\sum (x_{i}-y_ ...

随机推荐

  1. DisplayNameFor()方法的工作原理

    DisplayNameFor()方法的工作原理原创Peter Yelnav 最后发布于2018-11-23 11:09:51 阅读数 1308 收藏展开最近研究了一下ASP.NET MVC,困惑于视图 ...

  2. 好文章推荐 数据库mysql

    https://blog.csdn.net/guofeng93/article/details/53994112

  3. 如何在Go中获得 "A1","B2" 类似字符+数字的字符串

    package main import ( "fmt" ) func main() { // 字符串 str := "ABCDEFGHIJKLMNOPQRSTUVWXYZ ...

  4. jenkins pipline 几个注意细节

    新建jenkins pipline 1)pipeline的脚本语法要正确,sonarqube的projectKey需要做相应的修改 2)先执行一次构建,会报错 3)进到jenkins workspac ...

  5. vue基础api

    vue比jq好处 1jq 频繁操作dom 增加了性能消耗 vue 模拟dom 从内存中拿 2jq 数据没有统一管理 vue 统一管理数据 3vue 组件开发可以提取出公共的html或js   mv*好 ...

  6. Java代码如何关联Hadoop源码

    昨天在学习Hadoop的时候,遇到一个问题就是Java关联Hadoop源码的时候死活关联不上,但是我发现在公司的电脑就可以顺利关联到源码.考虑了一下觉得应该是Eclipse版本的问题,于是我下载了ec ...

  7. iview渲染函数

    <Table border :columns="discountColumns" :data="discountData.rows"></Ta ...

  8. 计算机网络 - TCP_NODELAY 和 TCP_CORK, TCP_NOPUSH

    参考 https://www.cnblogs.com/biyeymyhjob/p/4670502.html https://stackoverflow.com/questions/3761276/wh ...

  9. 计算几何-UVa10652

    This article is made by Jason-Cow.Welcome to reprint.But please post the article's address. 题意见白书,P2 ...

  10. drf解析模块,异常模块,响应模块,序列化模块

    复习 """ 1.接口:url+请求参数+响应参数 Postman发送接口请求的工具 method: GET url: https://api.map.baidu.com ...