@题目描述@

春春是一名道路工程师,负责铺设一条长度为 n 的道路。

铺设道路的主要工作是填平下陷的地表。整段道路可以看作是 n 块首尾相连的区域,一开始,第 i 块区域下陷的深度为 di。

春春每天可以选择一段连续区间 [L,R],填充这段区间中的每块区域,让其下陷深度减少 1。在选择区间时,需要保证,区间内的每块区域在填充前下陷深度均不为 0。

春春希望你能帮他设计一种方案,可以在最短的时间内将整段道路的下陷深度都变为 0 。

输入

输入文件包含两行,第一行包含一个整数 n,表示道路的长度。 第二行包含 n 个整数,相邻两数间用一个空格隔开,第 i 个整数为 di。

输出

输出文件仅包含一个整数,即最少需要多少天才能完成任务。

输入样例#1:

6

4 3 2 5 3 5

输出样例#1:

9

样例解释1:

一种可行的最佳方案是,依次选择: [1,6]、[1,6]、[1,2]、[1,1]、[4,6]、[4,4]、[4,4]、[6,6]、[6,6]。

数据规模与约定

对于 30% 的数据,1 ≤ n ≤ 10;

对于 70% 的数据,1 ≤ n ≤ 1000;

对于 100% 的数据,1 ≤ n ≤ 100000 , 0 ≤ di ≤ 10000。

@考场上的思路@

我 抄 我 自 己?

虽然这是 NOIP2013 的原题“积木游戏”……然而我并没有做过-_-

所以考场上想了一个比较复杂的解:

显然观察样例,我们可以贪心地这样做:对于某一个区间,选择最小值,将这个区间减去这个最小值,然后把区间按照这个最小值分为两个区间分治求解。

因此,本来想写线段树来着……但是我及时地发现(其实是因为不想写再多想会儿hhhh)区间的最小值是不会变化的。也就是说我们可以不去动态查询区间最小值,而是建成笛卡尔树,再在笛卡尔树上进行操作。

代码(不建议参考,建议继续往后看正常的解):

#include<cstdio>
#include<stack>
using namespace std;
typedef long long ll;
const int MAXN = 100000;
const int MAXD = 10000;
struct node{
ll ans; int d;
node *ch[2];
}tree[MAXN + 5], *tcnt, *NIL, *root;
void init() {
root = NIL = tcnt = &tree[0];
NIL->ch[0] = NIL->ch[1] = NIL;
}
node *newnode(int d) {
tcnt++;
tcnt->d = d; tcnt->ch[0] = tcnt->ch[1] = NIL;
return tcnt;
}
stack<node*>stk;
int d[MAXN + 5];
void dfs(node *rt, int x) {
if( rt == NIL ) return ;
dfs(rt->ch[0], rt->d);
dfs(rt->ch[1], rt->d);
rt->ans = rt->ch[0]->ans + rt->ch[1]->ans + (rt->d - x);
}
int main() {
init(); int n;
scanf("%d", &n);
for(int i=1;i<=n;i++)
scanf("%d", &d[i]);
for(int i=1;i<=n;i++) {
node *nw = newnode(d[i]), *lst = NIL;
while( !stk.empty() && stk.top()->d > nw->d ) {
lst = stk.top();
stk.pop();
}
if( !stk.empty() ) stk.top()->ch[1] = nw;
nw->ch[0] = lst;
stk.push(nw);
}
while( !stk.empty() ) {
root = stk.top();
stk.pop();
}
dfs(root, 0);
printf("%lld\n", root->ans);
return 0;
}

@比较正常的题解@

我们实际上是求如图的块的个数。



我们不妨在块的右端点去统计每一块对答案的贡献。

所以就很简单了:

(1)如果 d[i] >= d[i+1],则 ans+=(d[i]-d[i+1])

(2)如果 d[i] < d[i+1],则 continue

最后 ans+= d[n] 即可

#include<cstdio>
typedef long long ll;
const int MAXN = 100000;
int d[MAXN + 5];
int main() {
int n; ll ans = 0;
scanf("%d", &n);
for(int i=1;i<=n;i++)
scanf("%d", &d[i]);
for(int i=1;i<n;i++)
if( d[i] >= d[i+1] ) ans += d[i] - d[i+1];
ans += d[n];
printf("%lld\n", ans);
}

@NOIP2018 - D1T1@ 铺设道路的更多相关文章

  1. [NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路

    [NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路 题目大意: 对于长度为\(n(n\le10^5)\)的非负数列\(A\),每次可以选取一个区间\(-1\).问将数列清零至少需要 ...

  2. 题解【洛谷P5019】[NOIP2018]铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...

  3. 洛谷P5019 [NOIP2018 提高组] 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 n 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 n 块首尾相连的区域,一开始,第 i 块区域下陷的深度为 di. 春春每天可以 ...

  4. NOIP2018Day1T1 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...

  5. 洛谷 P5019 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...

  6. NOIP2018D1T1 铺设道路

    原题:NOIP2013D1T1 积木大赛 题目地址:P5019 铺设道路 思路:玄学瞎搞 将每块区域插入一个小根堆,这里的小根堆用优先队列实现,即运用一个 \(pair\) , \(first\) 为 ...

  7. NOIP提高组2018试题解析 Day1 T1 铺设道路 P5019

    题目描述 春春是一名道路工程师,负责铺设一条长度为 nn 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 nn 块首尾相连的区域,一开始,第 ii 块区域下陷的深度为 d_idi​  ...

  8. 洛谷 P5019 铺设道路 & [NOIP2018提高组](贪心)

    题目链接 https://www.luogu.org/problem/P5019 解题思路 一道典型的贪心题. 假设从左往右填坑,如果第i个深与第i+1个,那么第i+1个就不需要额外填: 如果第i+1 ...

  9. 【比赛】NOIP2018 铺设道路

    原题,而且还是CCF自己的 考虑对于一段最长不上升序列,无论如何都至少有序列第一个数的贡献,可以知道,这个贡献是可以做到且最少的 然后对于序列最后一位,也就是最小的那一个数,可以和后面序列拼起来的就拼 ...

随机推荐

  1. ECMAScript 6 (浅显入门)

    1.let:ES6 新增了let命令,用来声明变量.它的用法类似于var,但是所声明的变量,只在let命令所在的代码块内有效. var命令会发生”变量提升“现象,即变量可以在声明之前使用,值为unde ...

  2. Hackerrank--Savita And Friends(最小直径生成树MDST)

    题目链接 After completing her final semester, Savita is back home. She is excited to meet all her friend ...

  3. Python子进程 (subprocess包)

    Python子进程 (subprocess包) subprocess以及常用的封装函数 当我们运行python的时候,我们都是在创建并运行一个进程.正如我们在Linux进程基础中介绍的那样,一个进程可 ...

  4. Cf序列化器-Serializer解析

    Cf序列化器-Serializer 定义序列化器 Django REST framework中的Serializer使用类来定义,须继承自rest_framework.serializers.Seri ...

  5. hive语句on和where一点小问题

    hive join 后面必须=(0.13版本后支持,不支持like,<>),on后面如需加条件语句必须放到where中不然会产生错误结果 (可以一对多,一对一,不可以多对多‘会出现数据翻倍 ...

  6. day18 10.使用ThreadLocal来解决问题

    ThreadLocal是一个容器/集合,是一个Map集合.不管你跨多少层,只要你是同一个线程就可以取出来.Service和Dao是同一个线程.Service第一次调用JdbcUtils.getConn ...

  7. Etag 和 If-None-Match

          ETag是HTTP1.1中才加入的一个属性,用来帮助服务器控制Web端的缓存验证.        它的原理是这样的,当浏览器请求服务器的某项资源(A)时, 服务器根据A算出一个哈希值(3f ...

  8. dijkstra算法 模板

    算法理解见: https://www.bilibili.com/video/av18586085/?p=83 模板: #define INF 1000000000 int N; int dist[10 ...

  9. js 常用事件总结

    无论web端还是手机端,用户的交互总伴随着事件监听 下面是我总结的一些常用到的事件 1.监听标签内容变化 非input元素 $(dom).bind('DOMNodeInserted',function ...

  10. Linux操作系统各版本ISO镜像下载(包括oracle linux\redhat\centos\u

    Linux操作系统各版本ISO镜像下载(包括oracle linux\redhat\centos\ubuntu\debian等) 1.Oracle Linux(下载地址) (1)OracleLinux ...