题目大意:

典题

数学分析 G(a,b)<sum[i]时 a优于b

G(a,b)<G(b,c)<sum[i]时 b必不为最优

#include <bits/stdc++.h>
#define N 500005
using namespace std;
int n,m,dp[N],deq[N],sum[N];
// deq[]为单调队列 sum[]为数组的前缀和
int DP(int i,int j) {
return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
}
int UP(int j,int k) { //yj-yk的部分
return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]);
}
int DOWN(int j,int k) {//xj-xk的部分
return *(sum[j]-sum[k]);
}
/*
由分析 当0<a<b<i时
若(ya-yb)/(xa-xb)<sum[i]
此处表达为G(a,b)<sum[i] 则j优于k 若存在a,b和b,c满足上述要求
即存在G(a,b)<sum[i] G(b,c)<sum[i]
若G(a,b)<G(b,c) 则b肯定不为最优点
*/
int main()
{
while(~scanf("%d%d",&n,&m)) {
sum[]=dp[]=;
for(int i=;i<=n;i++) {
int num; scanf("%d",&num);
sum[i]=sum[i-]+num;
}
int head=, tail=;
deq[tail++]=;
for(int i=;i<=n;i++) {
while(head+<tail && UP(deq[head+],deq[head])<=sum[i]
*DOWN(deq[head+],deq[head]))
head++; /// G(head+1,head)<=sum[i] 即head+1优于head 则去掉head
dp[i]=DP(i,deq[head]); // 用此时的最优head更新dp[i]
while(head+<tail && UP(i,deq[tail-])*DOWN(deq[tail-],deq[tail-])
<=DOWN(i,deq[tail-])*UP(deq[tail-],deq[tail-]))
tail--;
/// 如果此时G(i,tail-1)<=G(tail-1,tail-2)<=sum[i] 则说明tail-1对应点为可删去
deq[tail++]=i;
}
printf("%d\n",dp[n]);
}
return ;
}
/*
纠结了一下维护单调队列时为什么判断条件是<=
第一处 G(head+1,head)=sum[i] 说明 两者平等 不存在谁更优这个问题
而仍然 head++; 是因为既然两者平等 那么只要留一个就可以了
第二处 G(i,tail-1)=G(tail-1,tail-2) 说明 两者斜率相等
即 i,tail-1,tail-2 三个对应点在同一条直线上
那么 tail-1 这个点可以直接忽略 所以继续 tail--;
*/

Print Article /// 斜率优化DP oj26302的更多相关文章

  1. HDU3507 Print Article(斜率优化dp)

    前几天做多校,知道了这世界上存在dp的优化这样的说法,了解了四边形优化dp,所以今天顺带做一道典型的斜率优化,在百度打斜率优化dp,首先弹出来的就是下面这个网址:http://www.cnblogs. ...

  2. hdu 3507 Print Article(斜率优化DP)

    题目链接:hdu 3507 Print Article 题意: 每个字有一个值,现在让你分成k段打印,每段打印需要消耗的值用那个公式计算,现在让你求最小值 题解: 设dp[i]表示前i个字符需要消耗的 ...

  3. hdu3507 Print Article[斜率优化dp入门题]

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)To ...

  4. HDU3507 Print Article —— 斜率优化DP

    题目链接:https://vjudge.net/problem/HDU-3507 Print Article Time Limit: 9000/3000 MS (Java/Others)    Mem ...

  5. [hdu3507 Print Article]斜率优化dp入门

    题意:需要打印n个正整数,1个数要么单独打印要么和前面一个数一起打印,1次打印1组数的代价为这组数的和的平方加上常数M.求最小代价. 思路:如果令dp[i]为打印前i个数的最小代价,那么有 dp[i] ...

  6. HDU3507 Print Article (斜率优化DP基础复习)

    pid=3507">传送门 大意:打印一篇文章,连续打印一堆字的花费是这一堆的和的平方加上一个常数M. 首先我们写出状态转移方程 :f[i]=f[j]+(sum[i]−sum[j])2 ...

  7. hdu 3507 Print Article —— 斜率优化DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3507 设 f[i],则 f[i] = f[j] + (s[i]-s[j])*(s[i]-s[j]) + m ...

  8. hdu3507Print Article(斜率优化dp)

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)To ...

  9. HDU-3507Print Article 斜率优化DP

    学习:https://blog.csdn.net/bill_yang_2016/article/details/54667902 HDU-3507 题意:有若干个单词,每个单词有一个费用,连续的单词组 ...

随机推荐

  1. Python 空值和非空值

    1)任何值为0的值都是false,任何非0的值都是true if -0.0: print 'yes' #不打印yes if -0.1: print 'yes' #打印yes 2)任何为空的值都是fla ...

  2. Java-Class-@I:org.springframework.beans.factory.annotation.Autowired

    ylbtech-Java-Class-@I:org.springframework.beans.factory.annotation.Autowired 1.返回顶部   2.返回顶部 1. pack ...

  3. LeetCode 817. Linked List Components (链表组件)

    题目标签:Linked List 题目给了我们一组 linked list, 和一组 G, 让我们找到 G 在 linked list 里有多少组相连的部分. 把G 存入 hashset,遍历 lin ...

  4. SecureCRT是最常用的终端仿真程序,简单的说就是Windows下登录UNIX或Liunx服务器主机的软件,本文主要介绍SecureCRT的使用方法和技巧

    SecureCRT是最常用的终端仿真程序,简单的说就是Windows下登录UNIX或Liunx服务器主机的软件,本文主要介绍SecureCRT的使用方法和技巧 VanDyke CRT 和 VanDyk ...

  5. [转] undefined reference to `clock_gettime'

    下面这个错误通常是因为链接选项里漏了-lrt,但有时发现即使加了-lrt仍出现这个问题,使用nm命令一直,会发现-lrt最终指向的文件 没有包含任何symbol,这个时候,可以找相应的静态库版本lib ...

  6. LightOJ-1253-Misere Nim-nim博弈

    Alice and Bob are playing game of Misère Nim. Misère Nim is a game playing on k piles of stones, eac ...

  7. js对象属性值初始化封装函数

    在平常做项目的过程中,总是会遇到需要对一个已经定义过的对象的属性值进行初始化,且对象的属性值的类型有多种(string.number.array.object.boolean),为了方便自己就简单封装 ...

  8. Java学习之JVM、JRE、JDK联系与区别

    JVM,全称是Java Virtual Machine,翻译为Java虚拟机: JRE,全称是Java Runtime Environment,翻译为Java运行时环境: JDK,全称是Java De ...

  9. Substring UVA - 11468 AC自动机+概率DP

    题意: 给出一些字符和各自对应的选择概率,随机选择L次后得到一个长度为L的随机字符串S. 给出K个模板串,计算S不包含任何一个模板串的概率 dp[i][j]表示走到AC自动机 i 这个节点 还需要走 ...

  10. Neo4j 3.5发布,在索引方面大幅增强

    Neo4j 3.5版本已正式发布,这也是Neo4j宣布企业版闭源以来发布的第一个版本. 这个版本在性能.资源使用率以及安全方面均有增强,我们可以先快速浏览一下这个版本: 全文索引 基于Index的快速 ...