[POI2010]Divine Divisor

题目大意:

给你\(m(m\le600)\)个数\(a_i(a_i\le10^{18})\)。\(n=\prod a_i\)。现在要你找到一个最大的\(k\)使得\(\exists d\ne1,d^k|n\),并求出有多少\(d\)满足这样的条件。

思路:

首先线性筛预处理出\(10^6\)以内的所有质数,用这些质数除\(a_i\),剩下的\(a_i\)分为以下\(4\)种情况:

  1. \(a_i=1\),表示\(a_i\)的所有素数均被找出。
  2. \(a_i=p^2\),可以判断\(\lfloor\sqrt{a_i}\rfloor\)是否等于\(\lceil\sqrt{a_i}\rceil\),是的话就说明这是两个\(>10^6\)的质数平方。
  3. \(a_i=p\),可以使用Miller-Rabin算法判断是否为质数。
  4. \(a_i=pq\),对于这样的数,可以与其它所有数求一遍\(\gcd\)。若\(\gcd\ne1\)就说明我们成功分解了它的质因数。否则虽然我们不能知道它的质因数到底是什么,但是我们可以知道它与其它数没有共同的质因数,因此我们只需要统计出现的次数,而不需要关心其具体数值。

对于每个质数,我们统计其出现次数\(cnt[i]\)。第一个答案就是\(\max\{cnt[i]\}\)。若有\(k\)个质数的出现次数为\(\max\{cnt[i]\}\),则第二个答案就是\(2^k-1\)。

由\(k\)可能会很大,需要写高精度。

但是我们可以注意到,若不考虑\(-1\),答案就是\(2\)的幂。用浮点数来储存不会丢失精度,且\(-1\)后不会发生退位。因此可以先用浮点数计算\(2^k\),转成字符串,再在最后一位\(-1\)。

源代码:

#include<map>
#include<cmath>
#include<ctime>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<algorithm>
typedef long long int64;
typedef __int128 int128;
inline int64 getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int64 x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int M=601,LIM=1e6+1,P=78499;
bool vis[LIM];
int p[P],b[M];
int64 a[M];
std::map<int64,int> cnt,cnt2;
inline void sieve() {
vis[1]=true;
for(register int i=2;i<LIM;i++) {
if(!vis[i]) p[++p[0]]=i;
for(register int j=1;j<=p[0]&&i*p[j]<LIM;j++) {
vis[i*p[j]]=true;
if(i%p[j]==0) break;
}
}
}
inline int64 montgomery(int64 a,int64 k,const int64 &mod) {
int64 ret=1;
for(;k;k>>=1) {
if(k&1) ret=(int128)ret*a%mod;
a=(int128)a*a%mod;
}
return ret;
}
inline bool miller_rabin(const int64 &x) {
for(register int i=0;i<5;i++) {
const int64 a=(int64)rand()*rand()%(x-2)+2;
if(montgomery(a,x-1,x)!=1) return false;
}
return true;
}
char ans[1000];
int main() {
sieve();
srand(time(NULL));
const int m=getint();
for(register int i=1;i<=m;i++) {
a[i]=getint();
for(register int j=1;j<=p[0]&&a[i]!=1;j++) {
while(a[i]%p[j]==0) {
a[i]/=p[j];
cnt[p[j]]++;
}
}
if(a[i]==1) continue;
if(floor(sqrt(a[i]))==ceil(sqrt(a[i]))) {
cnt[sqrt(a[i])]+=2;
b[i]=1;
continue;
}
if(miller_rabin(a[i])) {
cnt[a[i]]++;
b[i]=2;
continue;
}
}
for(register int i=1;i<=m;i++) {
if(a[i]==1||b[i]) continue;
for(register int j=1;j<=m;j++) {
if(a[i]==a[j]||a[j]==1) continue;
const int64 d=std::__gcd(a[i],a[j]);
if(d==1) continue;
cnt[d]++;
cnt[a[i]/d]++;
goto Next;
}
cnt2[a[i]]++;
Next:;
}
int ans1=0,ans2=0;
for(register std::map<int64,int>::iterator i=cnt.begin();i!=cnt.end();i++) {
ans1=std::max(ans1,i->second);
}
for(register std::map<int64,int>::iterator i=cnt2.begin();i!=cnt2.end();i++) {
ans1=std::max(ans1,i->second);
}
for(register std::map<int64,int>::iterator i=cnt.begin();i!=cnt.end();i++) {
if(i->second==ans1) ans2++;
}
for(register std::map<int64,int>::iterator i=cnt2.begin();i!=cnt2.end();i++) {
if(i->second==ans1) ans2+=2;
}
printf("%d\n",ans1);
sprintf(ans,"%.Lf",ldexpl(1,ans2));
ans[strlen(ans)-1]--;
puts(ans);
return 0;
}

[POI2010]Divine Divisor的更多相关文章

  1. BZOJ2082 : [Poi2010]Divine divisor

    将所有数分解质因数,那么第一问就是求指数的最大值,第二问就是$2^{指数最大的质数个数}-1$. 首先将$10^6$以内的质因数全部找到,那么剩下部分的因子$>10^6$,且只有3种情况: 1. ...

  2. 【BZOJ2082】【POI2010】Divine divisor 假的pollard-rho

    题目大意:给你$m$个数$a_i$,定义$n=\Pi_{i=1}^{m}a_i$.将$n$分解质因数为$\Pi p_i^{k_i} $,$p_i$是质数.请输出$2^{max(k_i)}-1$,以及存 ...

  3. POI2010题解

    POI2010题解 我也不知道我为什么就开始刷POI了 有些题目咕掉了所以不完整(我都不知道POI到底有多少题) [BZOJ2079][Poi2010]Guilds (貌似bz跟洛谷上的不是一个题?) ...

  4. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  5. [UCSD白板题] Greatest Common Divisor

    Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...

  6. BZOJ 2080: [Poi2010]Railway 双栈排序

    2080: [Poi2010]Railway Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 140  Solved: 35[Submit][Statu ...

  7. 【BZOJ】【2084】【POI2010】Antisymmetry

    Manacher算法 啊……Manacher修改一下就好啦~蛮水的…… Manacher原本是找首尾相同的子串,即回文串,我们这里是要找对应位置不同的“反回文串”(反对称?233) 长度为奇数的肯定不 ...

  8. BZOJ2086: [Poi2010]Blocks

    题解: 想了想发现只需要求出最长的一段平均值>k即可. 平均值的问题给每个数减去k,判断是否连续的一段>0即可. 然后我们发现如果i<j 且 s[i]<s[j],那么 j 对于 ...

  9. BZOJ2083: [Poi2010]Intelligence test

    2083: [Poi2010]Intelligence test Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 241  Solved: 96[Sub ...

随机推荐

  1. hdu 2795 Billboard(线段树+单点更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2795 Billboard Time Limit: 20000/8000 MS (Java/Others ...

  2. redis基础之开机自启动和监听(二)

    redis安装好后,每次手动启动很不方便,配置开机自启动. 方法一:设置启动命令到/etc/rc.d/rc.local rc.local文件是系统全局脚本文件,会在其他开机进程脚本文件执行完毕后执行该 ...

  3. JS阶段测试

    JS阶段测试 一.选择题 1.表单中的数据要提交到的处理文件由表单的( c )属性指定. A. method     B. name    C. action    D. 以上都不对 2.在CSS样式 ...

  4. Smarty模板快速入门

    文件下载 1.下载地址:http://www.smarty.net/ 2.我下载的版本是3.1.27 ,将下载的文件smarty-3.1.27.zip解压出来,然后将libs文件夹的所有文件复制到你的 ...

  5. CentOS安装按进程实时统计流量情况工具NetHogs笔记

    CentOS安装按进程实时统计流量情况工具NetHogs笔记 一.概述 NetHogs是一款开源.免费的,终端下的网络流量监控工具,它可监控Linux的进程或应用程序的网络流量.NetHogs只能实时 ...

  6. shell中引号的作用(转)

    引号的作用 1 双引号(“”) 1)使用””可引用除字符$(美元符号).`(反引号).\(反斜线)外的任意字符或字符串.双引号不会阻止shell对这三个字符做特殊处理(标示变量名.命令替换.反斜线转义 ...

  7. FineReport——FS

    FR除了能够实现对报表等的二次开发,还能实现对决策系统的操作: FS.Trans.signOut() 退出决策平台系统 FS.tabPane._doCloseTab(FS.tabPane._getSe ...

  8. 利用h5,chart.js监测手机三轴加速度,用以研究计步算法等

    用window.DeviceMotionEvent来判断手机浏览器是否支持访问硬件资源,window.addEventListener('devicemotion',deviceMotionHandl ...

  9. date 时间确定

    获取当前时间: var date = new Date(); var year = date.getFullYear(); var month = date.getMonth() + 1; var d ...

  10. 切面保存web访问记录

    package com.hn.xf.device.api.rest.aspect; import com.hn.xf.device.api.rest.authorization.manager.Tok ...