BZOJ 2306 幸福路径(DP)
题解来源:http://www.cnblogs.com/jianglangcaijin/p/3799494.html
最后必然是走了一条链,或者是一个环(一直绕),或者是一条链加一个环。设f[i][j][k]表示从点j走了i步到达节点k的最大幸福度。那么f[i][j][j]就表示在绕环。那么在这个环上一直绕下去的期望为:

那么从S走i步到j再在j开始的环上绕圈的期望为:

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... double dp[N][N][N], val[N], Pow[N], sum[N];
int E[N*][]; int main ()
{
int n, m, s, u, v;
double p, ans=;
scanf("%d%d",&n,&m);
FOR(i,,n) scanf("%lf",val+i);
scanf("%d%lf",&s,&p);
FOR(i,,m) scanf("%d%d",&E[i][],&E[i][]);
FOR(i,,n) FOR(j,,n) FOR(k,,n) dp[i][j][k]=-1e18;
Pow[]=; FOR(i,,n+) Pow[i]=Pow[i-]*p;
FOR(i,,n) sum[i]=dp[][i][i]=val[i];
FOR(i,,n) FOR(j,,n) FOR(k,,m) dp[i][j][E[k][]]=max(dp[i][j][E[k][]],dp[i-][j][E[k][]]+val[E[k][]]*Pow[i]);
FOR(j,,n) FOR(i,,n) sum[j]=max(sum[j],(dp[i][j][j]-val[j]*Pow[i])/(-Pow[i]));
FOR(i,,n) FOR(j,,n) if (dp[i][s][j]>=) ans=max(ans,max(dp[i][s][j],dp[i][s][j]+sum[j]*Pow[i]-val[j]*Pow[i]));
printf("%.1f\n",ans);
return ;
}
BZOJ 2306 幸福路径(DP)的更多相关文章
- 【BZOJ 2306】 2306: [Ctsc2011]幸福路径 (倍增floyd)
2306: [Ctsc2011]幸福路径 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 912 Solved: 437 Description 有向 ...
- 【BZOJ2306】幸福路径(动态规划,倍增)
[BZOJ2306]幸福路径(动态规划,倍增) 题面 BZOJ 题解 不要求确切的值,只需要逼近 显然可以通过移动\(\infty\)步来达到逼近的效果 考虑每次的一步怎么移动 设\(f[i][j]\ ...
- 「CTSC 2011」幸福路径
[「CTSC 2011」幸福路径 蚂蚁是可以无限走下去的,但是题目对于精度是有限定的,只要满足精度就行了. \({(1-1e-6)}^{2^{25}}=2.6e-15\) 考虑使用倍增的思想. 定义\ ...
- BZOJ 2306: [Ctsc2011]幸福路径
Description 有向图 G有n个顶点 1, 2, -, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它 ...
- [BZOJ 2500]幸福的道路 树形dp+单调队列+二分答案
考试的时候打了个树链剖分,而且还审错题了,以为是每天找所有点的最长路,原来是每天起点的树上最长路径再搞事情.. 先用dfs处理出来每个节点以他为根的子树的最长链和次长链.(后面会用到) 然后用类似dp ...
- BZOJ.3425.[POI2013]Polarization(DP 多重背包 二进制优化)
BZOJ 洛谷 最小可到达点对数自然是把一条路径上的边不断反向,也就是黑白染色后都由黑点指向白点.这样答案就是\(n-1\). 最大可到达点对数,容易想到找一个点\(a\),然后将其子树分为两部分\( ...
- BZOJ2306: [Ctsc2011]幸福路径
Description 有向图 G有n个顶点 1, 2, -, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它 ...
- 【Ctsc2011】幸福路径
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2306 给定一张有向图,每个点有权值,蚂蚁从某个节点出发,初始体力值为$1$,每走一条边$体 ...
- [bzoj 1471] 不相交路径 (容斥原理)
题目描述 给出一个N(n<=150)N(n<=150)N(n<=150)个结点的有向无环简单图.给出444个不同的点aaa,bbb,ccc,ddd,定义不相交路径为两条路径,两条路径 ...
随机推荐
- ECMAScript 5 compatibility shims for legacy JavaScript engines
ECMAScript 5 compatibility shims for legacy JavaScript engines https://github.com/es-shims/es5-shim
- POJ3259_Wormholes_KEY
题目传送门 题目大意:有F组数据,N表示有N点,M表示有M条边,走一遍边需要花费Ti个时间,还有W个虫洞,可以向前回溯Ti时间,求能否从1点出发,经过一些路或虫洞回到1点后时间为负. 建图后用SPFA ...
- 成都Uber优步司机奖励政策(4月9日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 成都Uber优步司机奖励政策(1月9日)
1月9日 奖励政策 滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblog ...
- 【SQLSERVER】从数据库文件mdf中拆分ndf的方法和利弊
一.数据文件格式 SQLSERVER中,数据库的文件后缀有3种:mdf.ndf.ldf. 如下图所示,DW_TEST.mdf.DW_TEST_HIS.ndf.DW_TEST.ldf 属于同一个数据库T ...
- Adobe Photoshop CC2018最新教程+某宝店铺装修教程
PS免费教程,ps淘宝店铺装修教程.该资源为本人从某商网站重金买来,现免费分享给大家,下载地址:百度网盘,https://pan.baidu.com/s/127PjFbGwVVUVce1litHFsw
- Qt-QML-C++交互实现文件IO系统-后继-具体文件IO的实现
在上一篇文章中,我大致将这个QML中的文件IO类搭出了大致的框架,那么,今天抽时间写了一点文件的读写,这里我使用的文件流来读写文件. 文件结构如图 在QML中调用这个类了,就见简单的读取了一个JSON ...
- NGUI组件整理总结
一图流: 注意: private void RClickUI(Vector3 newPos) { this.gameObject.SetActive(true); this.transform.loc ...
- 前端开发工程师 - 06.Mini项目实战 - 项目简介
第6章--Mini项目实战 项目简介 Mini项目简介-Ego社区开发 回顾: 页面制作 页面架构 JavaScript程序设计 DOM编程艺术 产品前端架构 实践课Mini项目--Ego: 主题:漫 ...
- Java开发工程师(Web方向) - 03.数据库开发 - 第2章.数据库连接池
第2章--数据库连接池 数据库连接池 一般而言,在实际开发中,往往不是直接使用JDBC访问后端数据库,而是使用数据库连接池的机制去管理数据库连接,来实现对后端数据库的访问. 建立Java应用程序到后端 ...