Description

Little Q loves playing with different kinds of graphs very much. One day he thought about an interesting category of graphs called ``Cool Graph'', which are generated in the following way: 
Let the set of vertices be {1, 2, 3, ..., $n$}. You have to consider every vertice from left to right (i.e. from vertice 2 to $n$). At vertice $i$, you must make one of the following two decisions: 
(1) Add edges between this vertex and all the previous vertices (i.e. from vertex 1 to $i-1$). 
(2) Not add any edge between this vertex and any of the previous vertices. 
In the mathematical discipline of graph theory, a matching in a graph is a set of edges without common vertices. A perfect matching is a matching that each vertice is covered by an edge in the set. 
Now Little Q is interested in checking whether a ''Cool Graph'' has perfect matching. Please write a program to help him. 
 

Input

The first line of the input contains an integer $T(1\leq T\leq50)$, denoting the number of test cases. 
In each test case, there is an integer $n(2\leq n\leq 100000)$ in the first line, denoting the number of vertices of the graph. 
The following line contains $n-1$ integers $a_2,a_3,...,a_n(1\leq a_i\leq 2)$, denoting the decision on each vertice.
 

Output

For each test case, output a string in the first line. If the graph has perfect matching, output ''Yes'', otherwise output ''No''. 
 

Sample Input

3
2
1
2
2
4
1 1 2
 

Sample Output

Yes
No
No
 
 
 
题目意思:有n个点,这里给出了n-1个数(第0个点没有操作,所以不用)表示每个点的操作状态,操作1表示当前点与之前出现的所有的点连成一条边,操作2代表什么也不做,问最后是否每一个点都有一个点与其配对(两两配对)。
 
解题思路:英语水平确实太差了,上来看到graph,以为是图论,因为图论的内容没有学习,很打怵,不过榜单上和我水平差不多的队友有做出来的,就明白这不是一道难题,其实这应该算是一道找规律的题,我们很容易知道当n为奇数的时候是不可能出现两两匹配的。当n为偶数时,用count表示前面有多少个未配对的点,如果前面有未配对的点则,若操作为1,,则count--,若操作为2则count++。如果前面所有的点都匹对成功则,若操作为1,,则count=1(因为前面没有点与其配对),若操作为2则count++,最后如果count=0,则说明完美匹配perfect matching。
 
 
 #include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
int main()
{
int t,n,i,count;
int a[];
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
count=;
for(i=; i<n; i++)
{
scanf("%d",&a[i]);
}
if(n%==)
{
printf("No\n");///奇数不可能配对
}
else
{
for(i=; i<n; i++)
{
if(a[i]==)
{
if(count==)
{
count=;
}
else
{
count--;
}
}
else
{
count++;
}
}
if(count==)
{
printf("Yes\n");
}
else
{
printf("No\n");
}
}
}
return ;
}
 看见有大佬写出了这样很简单的代码,我也学习一下:
 
 #include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
int main()
{
int t,n,i,j,a,count;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
count=;
for(i=; i<n; i++)
{
scanf("%d",&a);
if(a==||count==)
{
count++;
}
else
{
count--;
}
}
if(count==)
{
printf("Yes\n");
}
else
{
printf("No\n");
} }
return ;
}
 思路本质上是一样的。。。。。。
 
 

Graph Theory的更多相关文章

  1. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  2. The Beginning of the Graph Theory

    The Beginning of the Graph Theory 是的,这不是一道题.最近数论刷的实在是太多了,我要开始我的图论与树的假期生活了. 祝愿我吧??!ShuraK...... poj18 ...

  3. Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学

    Sasha and Interesting Fact from Graph Theory n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m} 然后就 ...

  4. CF1109D Sasha and Interesting Fact from Graph Theory

    CF1109D Sasha and Interesting Fact from Graph Theory 这个 \(D\) 题比赛切掉的人基本上是 \(C\) 题的 \(5,6\) 倍...果然数学计 ...

  5. HDU6029 Graph Theory 2017-05-07 19:04 40人阅读 评论(0) 收藏

    Graph Theory                                                                 Time Limit: 2000/1000 M ...

  6. Codeforces 1109D. Sasha and Interesting Fact from Graph Theory

    Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 解题思路: 这题我根本不会做,是周指导带飞我. 首先对于当前已经有 \(m ...

  7. 2018 Multi-University Training Contest 4 Problem L. Graph Theory Homework 【YY】

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6343 Problem L. Graph Theory Homework Time Limit: 2000 ...

  8. 2017中国大学生程序设计竞赛 - 女生专场(Graph Theory)

    Graph Theory Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)To ...

  9. HDU 6343.Problem L. Graph Theory Homework-数学 (2018 Multi-University Training Contest 4 1012)

    6343.Problem L. Graph Theory Homework 官方题解: 一篇写的很好的博客: HDU 6343 - Problem L. Graph Theory Homework - ...

随机推荐

  1. Comparable和Compartor的区别

    1.List对象实现Comparable接口,使对象具备可比性 package tao; import java.util.ArrayList; import java.util.Collection ...

  2. $.extend() 合并问题

  3. 利用GoAccess分析Nginx访问日志

    原文链接:https://blog.csdn.net/yown/article/details/56027112 需求:及时得到线上用户访问日志分析统计结果,以便给开发.测试.运维.运营人员提供决策! ...

  4. 阿里云Windows远程连接出现身份验证错误,要求的函数不正确”的报错。

    最近很多阿里云用户在远程Windows Server的云服务器ECS时出现“身份验证错误,要求的函数不受支持”的报错. 这个问题解决起来非常简单,修改组策略中的一个配置就可以了. 在运行中输入gped ...

  5. yii学习笔记(7),数据库操作,联表查询

    在实际开发中,联表查询是很常见的,yii提供联表查询的方式 关系型数据表:一对一关系,一对多关系 实例: 文章表和文章分类表 一个文章对应一个分类 一个分类可以对应多个文章 文章表:article 文 ...

  6. 使用TryParse()来执行数值转换

    static void Main() { var ageText = "25"; if (int.TryParse(ageText,out int age)) { Console. ...

  7. buck型DC-DC分析

    BUCK型DC/DC电源分析 这种buck型DC/DC电路的拓扑结构:( 1N5822叫续流二极管!) LM2756相当于高速断开和闭合的开关,连接在Vin与Vout脚之间. 1. 在开关闭合时,电流 ...

  8. python3的下载与安装

    python3的下载与安装 1.首先,从Python官方网站:http://python.org/getit/ ,下载Windows的安装包 ython官网有几个下载文件,有什么区别?Python 3 ...

  9. 浅谈ConcurrentHashMap实现原理

    我们都知道HashTable是线程安全的类,因为使用了Synchronized来锁整张Hash表来实现线程安全,让线程独占: ConcurrentHashMap的锁分离技术就是用多个锁来控制对Hash ...

  10. 北京Uber优步司机奖励政策(1月16日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...