luogu

题意

平面上有\(n\)个点,每个点\((x_i,y_i)\),价值为\(w_i\)。\(m\)次询问,每次给出\(a_i,b_i,c_i\)求满足\(a_ix+b_iy<c_i\)的点的总价值。

\(n,m\le50000\)

sol

正解貌似是\(O(n^{1.5}\log n)\)?

我只会\(kdt\)qaq

直接暴力就行了,每到一个结点判断是否可以直接返回(交集为空),全部算上(完全包含与查询范围),算是剪枝吧。

code

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
#define ll long long
#define ls t[o].ch[0]
#define rs t[o].ch[1]
#define cmin(a,b) (a>b?a=b:a)
#define cmax(a,b) (a<b?a=b:a)
const int N = 5e4+5;
int n,m,D,root;ll ans;
struct node{
int d[2],key;
bool operator < (const node &b) const
{return d[D]<b.d[D];}
}a[N];
struct kdtree{int d[2],Min[2],Max[2],ch[2];ll sum;}t[N];
void mt(int x,int y){
cmin(t[x].Min[0],t[y].Min[0]);cmax(t[x].Max[0],t[y].Max[0]);
cmin(t[x].Min[1],t[y].Min[1]);cmax(t[x].Max[1],t[y].Max[1]);
t[x].sum+=t[y].sum;
}
int build(int l,int r,int d){
D=d;int o=l+r>>1;
nth_element(a+l,a+o,a+r+1);
t[o].d[0]=t[o].Min[0]=t[o].Max[0]=a[o].d[0];
t[o].d[1]=t[o].Min[1]=t[o].Max[1]=a[o].d[1];
t[o].sum=a[o].key;
if (l<o) ls=build(l,o-1,d^1),mt(o,ls);
if (o<r) rs=build(o+1,r,d^1),mt(o,rs);
return o;
}
inline bool empty(int o,int x,int y,int z){
if (1ll*t[o].Min[0]*x+1ll*t[o].Min[1]*y<z) return 0;
if (1ll*t[o].Min[0]*x+1ll*t[o].Max[1]*y<z) return 0;
if (1ll*t[o].Max[0]*x+1ll*t[o].Min[1]*y<z) return 0;
if (1ll*t[o].Max[0]*x+1ll*t[o].Max[1]*y<z) return 0;
return 1;
}
inline bool whole(int o,int x,int y,int z){
if (1ll*t[o].Min[0]*x+1ll*t[o].Min[1]*y>=z) return 0;
if (1ll*t[o].Min[0]*x+1ll*t[o].Max[1]*y>=z) return 0;
if (1ll*t[o].Max[0]*x+1ll*t[o].Min[1]*y>=z) return 0;
if (1ll*t[o].Max[0]*x+1ll*t[o].Max[1]*y>=z) return 0;
return 1;
}
inline bool in(int o,int x,int y,int z){
return 1ll*t[o].d[0]*x+1ll*t[o].d[1]*y<z;
}
void query(int o,int x,int y,int z){
if (empty(o,x,y,z)) return;
if (whole(o,x,y,z)) {ans+=t[o].sum;return;}
if (in(o,x,y,z)) ans+=a[o].key;
if (ls) query(ls,x,y,z);if (rs) query(rs,x,y,z);
}
int main(){
n=gi();m=gi();
for (int i=1;i<=n;++i) a[i]=(node){gi(),gi(),gi()};
root=build(1,n,0);
while (m--){
int x=gi(),y=gi(),z=gi();ans=0;
query(root,x,y,z);printf("%lld\n",ans);
}
return 0;
}

[Luogu4475]巧克力王国的更多相关文章

  1. Bzoj2850 巧克力王国

    Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 505  Solved: 204 Description 巧克力王国里的巧克力都是由牛奶和可可做成的.但 ...

  2. BZOJ2820 - 巧克力王国

    原题链接 Description 给出个二维平面上的点,第个点为,权值为.接下来次询问,给出,求所有满足的点的权值和. Solution 对于这个点建一棵k-d树,子树维护一个子树和. 如果子树所代表 ...

  3. 洛谷 P4475 巧克力王国 解题报告

    P4475 巧克力王国 题目描述 巧克力王国里的巧克力都是由牛奶和可可做成的.但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 \(x\) 和 \( ...

  4. 【BZOJ】【2850】【Violet 0】巧克力王国

    KD-Tree 问平面内在某条直线下方的点的权值和 我一开始yy的是:直接判这个矩形最高的两个点(y坐标的最大值)是否在这条直线下方就可以了~即判$A*x+B*y<C$... 然而这并不对啊…… ...

  5. bzoj 2850 巧克力王国

    bzoj 2850 巧克力王国 钱限题.题面可以看这里. 显然 \(x\) \(y\) 可以看成坐标平面上的两维,蛋糕可以在坐标平面上表示为 \((x,y)\) ,权值为 \(h\) .用 \(kd- ...

  6. LG4475 巧克力王国

    题意 巧克力王国里的巧克力都是由牛奶和可可做成的.但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 x 和 y 为其牛奶和可可的含量.由于每个人对于 ...

  7. 【BZOJ2850】巧克力王国 [KD-tree]

    巧克力王国 Time Limit: 60 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 巧克力王国里的巧克力都是由牛奶和 ...

  8. 洛谷P4475 巧克力王国

    洛谷P4475 巧克力王国 题目描述 巧克力王国里的巧克力都是由牛奶和可可做成的. 但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 x 和 y 为 ...

  9. 【BZOJ2850】巧克力王国 KDtree

    [BZOJ2850]巧克力王国 Description 巧克力王国里的巧克力都是由牛奶和可可做成的.但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜 欢过于甜的巧克力.对于每一块巧克力,我们设 ...

随机推荐

  1. SSD: Single Shot MultiBox Detector 编译方法总结

    SSD是一个基于单网络的目标检测框架,它是基于caffe实现的,所以下面的教程是基于已经编译好的caffe进行编译的. caffe的编译可以参考官网 caffe Installation Instal ...

  2. quartz(5)--作业管理和存储

    作业一旦被调度,调度器需要记住并且跟踪作业和它们的执行次数.如果你的作业是30分钟后或每30秒调用,这不是很有用.事实上,作业执行需要非常准确和即时调用在被调度作业上的execute()方法.Quar ...

  3. EF Code-First 学习之旅 数据库初始化

    1.CreateDatabaseIfNotExists: 2.DropCreateDatabaseIfModelChanges: 3.DropCreateDatabaseAlways: 4.Custo ...

  4. skynet 创建存储过程脚本

    最近主程更改了数据库的操作方案,由之前的拼写sql脚本转为在mysql端创建好存储过程后,直接调用存储过程. 首先对一个表测试上述过程: 数据库端存储过程:(测试表) CREATE TABLE `ra ...

  5. js中object的copy

    一.场景 在js中一个对象(Object)或者是一个数组(Array)在复制的过程中往往不是特别的简单,一般情况下我们会直接将其赋值给另外一个变量名下,就像这样: var a = [1,2,3]; v ...

  6. mysql数据库优化课程---10、mysql数据库分组聚合

    mysql数据库优化课程---10.mysql数据库分组聚合 一.总结 一句话总结:select concat(class,' 班') 班级,concat(count(*),' 人') 人数 from ...

  7. SpringBoot:竟然has no explicit mapping for /error

    异常:This application has no explicit mapping for /error, so you are seeing this as a fallback. 出现这个异常 ...

  8. yii2:doajax(post)会报500错误

    yii2:doajax(post)会报500错误:这是因为yii2开启了防御csrf的攻击机制,可去先去掉,在控制器里去掉:public $enableCsrfValidation = false , ...

  9. Eclipse工具栏上android的机器人小图标不见了

    可以通过「Window」⇒「Customize Perspective」⇒「Tool Bar Visibility」Tab画面上选择Android SDK and AVD Manager来显示

  10. 用requests库爬取猫眼电影Top100

    这里需要注意一下,在爬取猫眼电影Top100时,网站设置了反爬虫机制,因此需要在requests库的get方法中添加headers,伪装成浏览器进行爬取 import requests from re ...