题意:计算a1^( a2^( a3^( a4^( a5^(...) ) ) ) ) % m的值,输入a数组和m,不保证m是质数,不保证互质

裸的欧拉定理题目,考的就一个公式 a^b = a^( b % phi(m) + phi(m) ) ( mod m ),这个公式的前提条件是 b >= phi(m)

但是这道题并不需要判断b >= phi(m)的条件,直接用公式就能过掉,而且udebug的标程也是错的

而且我也不知道像这样的形式如何判断b >= phi(m),如果有神犇会的话欢迎教教本蒟蒻

一组叉掉std和我的程序的数据:8 2 6 2,答案是4,程序输出0。

 #include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <utility> using namespace std;
const int MAXN = ; int m, n, a[MAXN]; int phi( int x ) {
int ans = x;
for( int i = ; i*i <= x; ++i )
if( x % i == ) {
ans = ans / i * (i-);
while( x % i == ) x /= i;
}
if( x > ) ans = ans / x * (x-);
return ans;
}
int pow_mod( int a, int b, int m ) {
if( !b ) return ;
int rtn = pow_mod(a,b/,m);
rtn = rtn * rtn % m;
if( b& ) rtn = rtn * a % m;
return rtn;
} int solve( int i, int mod ) {
if( i == n- ) return a[i] % mod;
int b = solve( i+, phi(mod) ); // 这里没有判断b >= phi(mod),直接就过掉了
return pow_mod( a[i], b+phi(mod), mod );
} int main() {
int kase = ;
while( scanf( "%d", &m ) == ) {
scanf( "%d", &n );
for( int i = ; i < n; ++i ) scanf( "%d", a+i );
printf( "Case #%d: %d\n", kase++, solve(,m) );
}
return ;
}

【题解】Huge Mods UVa 10692 欧拉定理的更多相关文章

  1. Huge Mods UVA - 10692(指数循环节)

    题意: 输入正整数a1,a2,a3..an和模m,求a1^a2^...^an mod m 解析: #include <iostream> #include <cstdio> # ...

  2. uva 10692 - Huge Mods(数论)

    题目链接:uva 10692 - Huge Mods 题目大意:给出一个数的次方形式,就它模掉M的值. 解题思路:依据剩余系的性质,最后一定是行成周期的,所以就有ab=abmod(phi[M])+ph ...

  3. uva 10692 Huge Mods 超大数取模

    vjudge上题目链接:Huge Mods 附上截图: 题意不难理解,因为指数的范围太大,所以我就想是不是需要用求幂大法: AB % C = AB % phi(C) + phi(C) % C ( B ...

  4. UVA 10692 Huge Mods(指数循环节)

    指数循环节,由于a ^x = a ^(x % m + phi(m)) (mod m)仅在x >= phi(m)时成立,故应注意要判断 //by:Gavin http://www.cnblogs. ...

  5. UVA 10692 Huge Mod

    Problem X Huge Mod Input: standard input Output: standard output Time Limit: 1 second The operator f ...

  6. uva 10692 高次幂取模

    Huge Mod Input: standard input Output: standard output Time Limit: 1 second The operator for exponen ...

  7. UVA10692:Huge Mods

    题面 传送门 题意 输入正整数a1,a2,a3..an和模m,求a1^a2^...^an mod m Sol 首先有\[ a^b\equiv \begin{cases} a^{b\%\phi(p)}~ ...

  8. UVA-10692 Huge Mods

    题目大意:计算a1^a2^a3^a4......^an模m的值. 题目解析:幂取模运算的结果一定有周期.一旦找到周期就可把高次幂转化为低次幂.有降幂公式 (a^x)%m=(a^(x%phi(m)+ph ...

  9. 【题解】Inspection UVa 1440 LA 4597 NEERC 2009

    题目传送门:https://vjudge.net/problem/UVA-1440 看上去很像DAG的最小路径覆盖QwQ? 反正我是写了一个上下界网络流,建模方法清晰易懂. 建立源$s$,向每个原图中 ...

随机推荐

  1. python程序设计——函数设计与调用

    一.函数定义与调用 def 函数名([参数列表]): '''注释''' 函数体 # 输出小于n的斐波那契数 >>def fib(n): a,b=1,1 while a < n: pr ...

  2. CSP201412-2:Z字形扫描

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  3. ajax的$.get()方法和tomcat服务器的交互

    AJAX AJAX = 异步 JavaScript 和 XML. AJAX 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术. Ajax  get()方法 定义和用法 $.get() 方法 ...

  4. 【第五章】MySQL数据库的安全机制

    MySQL权限表MySQL用户管理MySQL权限管理SSL加密连接

  5. [贪心经典算法]Kruskal算法

    Kruskal算法的高效实现需要一种称作并查集的结构.我们在这里不介绍并查集,只介绍Kruskal算法的基本思想和证明,实现留在以后讨论. Kruskal算法的过程: (1) 将全部边按照权值由小到大 ...

  6. iOS奔溃日志信息统计使用笔记

    1.Bugly的集成很简单,直接一个pod就可以搞定 pod 'Bugly' 2.在官网上注册账号 3.初始化SDK 导入头文件 在工程的AppDelegate.m文件导入头文件 #import &l ...

  7. Swift中避免在多个文件中重复import相同的第三方包

    swift中由于有命名空间的存在,在同一个target创建的文件,都可以不引用直接就可以拿来使用,但是不同target之间必须要import 之后才能使用,在不同的文件中使用都要重复的import这个 ...

  8. TCP系列03—连接管理—2、TCP连接的同时打开和同时关闭

    在前面的内容中我们介绍了TCP连接管理中最常见的三次握手方式和四次挥手的方式.但是有可能A和B两端同时执行主动打开并连接对方或者同时执行主动关闭连接(尽管发生这种情况的可能性比较低低),这个时候的流程 ...

  9. bwapp之xss(blog)

    存储型XSS,持久化,代码是存储在服务器中的,如在个人信息或发表文章等地方,加入代码,如果没有过滤或过滤不严,那么这些代码将储存到服务器中,用户访问该页面的时候触发代码执行.这种XSS比较危险,容易造 ...

  10. union查询

     select id, uid, money, FROM_UNIXTIME(created) as created, type FROM  (  #type=1是  cjw_finance_bonus ...