论文笔记——Channel Pruning for Accelerating Very Deep Neural Networks
采用方法
这篇文章主要讲诉了采用裁剪信道(channel pruning)的方法实现深度网络的加速。主要方法有两点:
(1)LASSO regression based channel selection. (2)least square reconstruction.
实现效果
VGG-16实现5x的加速,0.3%误差增加(深度卷积网络,13个CNN)
ResNet实现2x加速,1.4%误差增加(残差网络)
Xception实现2x加速,1.0%误差增加(残差网络)
本文还结合了spatial, channel factorization and channel pruning三种方法实现更好的效果。
网络大小压缩没有说。
CNN加速方法
- optimized implementation(e.g. FFT) 就是实现更快的计算方法
- quantization(e.g. BinaryNet) 就是将网络中的浮点数二值化
- structed simplification 就是将网络结果变简单
structed simplification 方法
- tensor factorization 就是将矩阵分解
- sparse connection 就是让网络连接变得稀疏
- channel pruning 信道裁剪
channel pruning 方法
- first k selects the first k channels. 这种方法太简单粗暴了。
- max response 也就是选择权值和最大的信道,认为拥有的信息最多。
论文笔记——Channel Pruning for Accelerating Very Deep Neural Networks的更多相关文章
- 论文笔记:(2019CVPR)PointConv: Deep Convolutional Networks on 3D Point Clouds
目录 摘要 一.前言 1.1直接获取3D数据的传感器 1.2为什么用3D数据 1.3目前遇到的困难 1.4现有的解决方法及存在的问题 二.本文idea 2.1 idea来源 2.2 初始思路 2.3 ...
- 论文笔记:分形网络(FractalNet: Ultra-Deep Neural Networks without Residuals)
FractalNet: Ultra-Deep Neural Networks without Residuals ICLR 2017 Gustav Larsson, Michael Maire, Gr ...
- 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking arXiv Paper ...
- 论文笔记(7):Constrained Convolutional Neural Networks for Weakly Supervised Segmentation
UC Berkeley的Deepak Pathak 使用了一个具有图像级别标记的训练数据来做弱监督学习.训练数据中只给出图像中包含某种物体,但是没有其位置信息和所包含的像素信息.该文章的方法将imag ...
- 论文笔记:Mastering the game of Go with deep neural networks and tree search
Mastering the game of Go with deep neural networks and tree search Nature 2015 这是本人论文笔记系列第二篇 Nature ...
- 论文笔记-IGCV3:Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks
论文笔记-IGCV3:Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks 2018年07月11日 14 ...
- 《Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization》课堂笔记
Lesson 2 Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization 这篇文章其 ...
- 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement
论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...
- 论文翻译:2018_Source localization using deep neural networks in a shallow water environment
论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关 ...
随机推荐
- mysql 内置功能 存储过程 删除存储过程
删除存储过程 drop procedure proc_name;
- python 基础 特殊符号的使用
python语句中的一些基本规则和特殊符号: 1.井号# 表示之后的字符为python注释 Python注释语句从#号字符开始,注释可以在语句的任何一个地方开始,解释器会忽略掉该行#号之后的所有内容 ...
- laravel教程入门笔记
安装laravel框架 1.安装命令 composer create-project --prefer-dist laravel/laravel ytkah ytkah表示文件夹名,如果不写的话自动会 ...
- jmeter连接mysql数据库报错Cannot create PoolableConnectionFactory (Could not create connection to database server.)
今天在学习jmeter的jdbc取样器,发现在配置完JDBC Connection Configuration和JDBC Request后,点击运行.在查看结果树中显示响应数据: Cannot cre ...
- vue中两种路由跳转拼接参数
this.$router.push({name:"Home",query:{id:1,name:2}}) // 取到路由带过来的参数 let routerParams = this ...
- uboot中fdt命令的使用
转载:https://blog.csdn.net/voice_shen/article/details/7441894 依linux community的要求,从linux-3.5后,新提交的code ...
- Lower Power with CPF(三)
常用的一些Lower Power的策略: 1)Clock tree optimization and clock gating:在正常情况下clock信号会一直toggle at the maximu ...
- css+div table
div+css table表格样式 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" " ...
- font-awesome图标
- zookeeper 详解
是 分布式 协调 服务. ZK的工作:注册:所有节点向ZK争抢注册,注册成功会建立一套节点目录树,先注册的节点为Active节点,后注册节点成为standby;监听事件:节点在ZK集群里注册监听动作: ...