mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型及日志的保存

import numpy as np
import mxnet as mx
import logging logging.getLogger().setLevel(logging.DEBUG) batch_size = 100
mnist = mx.test_utils.get_mnist()
train_iter = mx.io.NDArrayIter(mnist['train_data'], mnist['train_label'], batch_size, shuffle=True)
val_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size) data = mx.sym.var('data')
# first conv layer
conv1= mx.sym.Convolution(data=data, kernel=(5,5), num_filter=20)
tanh1= mx.sym.Activation(data=conv1, act_type="tanh")
pool1= mx.sym.Pooling(data=tanh1, pool_type="max", kernel=(2,2), stride=(2,2))
# second conv layer
conv2= mx.sym.Convolution(data=pool1, kernel=(5,5), num_filter=50)
tanh2= mx.sym.Activation(data=conv2, act_type="tanh")
pool2= mx.sym.Pooling(data=tanh2, pool_type="max", kernel=(2,2), stride=(2,2))
# first fullc layer
flatten= mx.sym.Flatten(data=pool2)
fc1= mx.symbol.FullyConnected(data=flatten, num_hidden=500)
tanh3= mx.sym.Activation(data=fc1, act_type="tanh")
# second fullc
fc2= mx.sym.FullyConnected(data=tanh3, num_hidden=10)
# softmax loss
lenet= mx.sym.SoftmaxOutput(data=fc2, name='softmax') # create a trainable module on GPU 0
lenet_model = mx.mod.Module(
symbol=lenet,
context=mx.cpu()) # train with the same
lenet_model.fit(train_iter,
eval_data=val_iter,
optimizer='sgd',
optimizer_params={'learning_rate':0.1},
eval_metric='acc',
batch_end_callback = mx.callback.Speedometer(batch_size, 100),
num_epoch=10)

INFO:root:Epoch[0] Batch [100] Speed: 1504.57 samples/sec accuracy=0.113564
INFO:root:Epoch[0] Batch [200] Speed: 1516.40 samples/sec accuracy=0.118100
INFO:root:Epoch[0] Batch [300] Speed: 1515.71 samples/sec accuracy=0.116600
INFO:root:Epoch[0] Batch [400] Speed: 1505.61 samples/sec accuracy=0.110200
INFO:root:Epoch[0] Batch [500] Speed: 1406.21 samples/sec accuracy=0.107600
INFO:root:Epoch[0] Train-accuracy=0.108081
INFO:root:Epoch[0] Time cost=40.572
INFO:root:Epoch[0] Validation-accuracy=0.102800
INFO:root:Epoch[1] Batch [100] Speed: 1451.87 samples/sec accuracy=0.115050
INFO:root:Epoch[1] Batch [200] Speed: 1476.86 samples/sec accuracy=0.179600
INFO:root:Epoch[1] Batch [300] Speed: 1409.67 samples/sec accuracy=0.697100
INFO:root:Epoch[1] Batch [400] Speed: 1379.52 samples/sec accuracy=0.871900
INFO:root:Epoch[1] Batch [500] Speed: 1374.88 samples/sec accuracy=0.901000
INFO:root:Epoch[1] Train-accuracy=0.925556
INFO:root:Epoch[1] Time cost=42.527
INFO:root:Epoch[1] Validation-accuracy=0.936900
INFO:root:Epoch[2] Batch [100] Speed: 1376.59 samples/sec accuracy=0.936436
INFO:root:Epoch[2] Batch [200] Speed: 1379.29 samples/sec accuracy=0.948100
INFO:root:Epoch[2] Batch [300] Speed: 1375.07 samples/sec accuracy=0.953400
INFO:root:Epoch[2] Batch [400] Speed: 1369.65 samples/sec accuracy=0.958600
INFO:root:Epoch[2] Batch [500] Speed: 1371.79 samples/sec accuracy=0.960900
INFO:root:Epoch[2] Train-accuracy=0.966667
INFO:root:Epoch[2] Time cost=43.660
INFO:root:Epoch[2] Validation-accuracy=0.972900
INFO:root:Epoch[3] Batch [100] Speed: 1230.74 samples/sec accuracy=0.969505
INFO:root:Epoch[3] Batch [200] Speed: 1335.27 samples/sec accuracy=0.970800
INFO:root:Epoch[3] Batch [300] Speed: 1264.43 samples/sec accuracy=0.972600
INFO:root:Epoch[3] Batch [400] Speed: 1242.03 samples/sec accuracy=0.974100
INFO:root:Epoch[3] Batch [500] Speed: 1322.77 samples/sec accuracy=0.974600
INFO:root:Epoch[3] Train-accuracy=0.976465
INFO:root:Epoch[3] Time cost=46.860
INFO:root:Epoch[3] Validation-accuracy=0.980700
INFO:root:Epoch[4] Batch [100] Speed: 1342.42 samples/sec accuracy=0.978020
INFO:root:Epoch[4] Batch [200] Speed: 1339.98 samples/sec accuracy=0.980600
INFO:root:Epoch[4] Batch [300] Speed: 1344.36 samples/sec accuracy=0.981000
INFO:root:Epoch[4] Batch [400] Speed: 1338.13 samples/sec accuracy=0.980000
INFO:root:Epoch[4] Batch [500] Speed: 1343.76 samples/sec accuracy=0.979000
INFO:root:Epoch[4] Train-accuracy=0.983535
INFO:root:Epoch[4] Time cost=44.694
INFO:root:Epoch[4] Validation-accuracy=0.985700
INFO:root:Epoch[5] Batch [100] Speed: 1333.50 samples/sec accuracy=0.981584
INFO:root:Epoch[5] Batch [200] Speed: 1342.07 samples/sec accuracy=0.985400
INFO:root:Epoch[5] Batch [300] Speed: 1339.04 samples/sec accuracy=0.984300
INFO:root:Epoch[5] Batch [400] Speed: 1323.42 samples/sec accuracy=0.983500

mxnet卷积神经网络训练MNIST数据集测试的更多相关文章

  1. TensorFlow——CNN卷积神经网络处理Mnist数据集

    CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...

  2. Tensorflow学习教程------利用卷积神经网络对mnist数据集进行分类_利用训练好的模型进行分类

    #coding:utf-8 import tensorflow as tf from PIL import Image,ImageFilter from tensorflow.examples.tut ...

  3. TensorFlow初探之简单神经网络训练mnist数据集(TensorFlow2.0代码)

    from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data #加载 ...

  4. 使用一层神经网络训练mnist数据集

    import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat ...

  5. 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集

    上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...

  6. 3层-CNN卷积神经网络预测MNIST数字

    3层-CNN卷积神经网络预测MNIST数字 本文创建一个简单的三层卷积网络来预测 MNIST 数字.这个深层网络由两个带有 ReLU 和 maxpool 的卷积层以及两个全连接层组成. MNIST 由 ...

  7. 使用caffe训练mnist数据集 - caffe教程实战(一)

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...

  8. Python实现bp神经网络识别MNIST数据集

    title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] cat ...

  9. deep_learning_LSTM长短期记忆神经网络处理Mnist数据集

    1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...

随机推荐

  1. WCF推送

    http://www.cnblogs.com/server126/archive/2011/08/11/2134942.html

  2. ubuntu 编译android 源码笔记

    已经验证,可以编译成功.过程中会碰到一些编译错误,安装好依赖环境,可以解决. 1.splite压缩包的合并,解压缩,md5验证 http://pan.baidu.com/s/1bnG1NtX kitk ...

  3. C#中int、long、float、double、decimal最大值最小值

    最近在将java上写的一个简单的表达式求值计算器移植到Windows Phone 8,java中double的精度问题是很明显的,解决办法是改用BigDecimal类.所以觉得C#中用double也是 ...

  4. 【小白的CFD之旅】18 控制方程基础

    忙碌了一个学期终于放暑假了,小白心情很愉快.然而想起CFD教材上的那些点缀着各种让人眼花缭乱符号的数学公式,整个人就不好了.不过这些事情小白也不好意思去麻烦师兄师姐们,还得靠自己去摸索.正好趁着暑假把 ...

  5. VS2012高亮显示当前行背景色的问题

    在VS2012中,如果你不幸用了三方主题,尤其是深色主题.比如http://studiostyl.es/schemes/son-of-obsidian ,那么你很可能发现当前行高亮的样式变成了这样: ...

  6. 每天一个linux命令(4) df命令

    linux中df命令的功能是用来检查linux服务器的文件系统的磁盘空间占用情况.可以利用该命令来获取硬盘被占用了多少空间,目前还剩下多少空间等信息. 1.命令格式: df [选项] [文件] 2.命 ...

  7. python(56):正则表达式积累

    来源:http://www.runoob.com/python/python-reg-expressions.html re.match函数 re.match 尝试从字符串的起始位置匹配一个模式,如果 ...

  8. 关于构造函数和this调用的思考

    文中一系列思考和内容引发自以下问题:我需要在一个类的构造函数中调用另一个对象的构造函数,并使用this初始化其中的一个引用成员. 主要遇到的问题: 1. 构造函数的初始化列表中能访问this吗? 很明 ...

  9. API:详解 pandas.read_csv

    pandas.read_csv 作为常用的读取数据的常用API,使用频率非常高,但是API中可选的参数有哪些呢? pandas项目代码 答案是: .read_csv(filepath_or_buffe ...

  10. uboot——之初体验

    官方下载地址:ftp://ftp.denx.de/pub/u-boot/ uboot的终极奥义就是启动内核. 但是,现在,我们先做最基本的,去官网下载一个支持自己板子的uboot,然后解压缩,打补丁. ...