POJ3660 Cow Contest【最短路-floyd】
N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will
always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M(1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results
of the rounds will not be contradictory.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output
* Line 1: A single integer representing the number of cows whose ranks can be determined
Sample Input
5 5
4 3
4 2
3 2
1 2
2 5
Sample Output
2
思路:原来是觉得像昨天写的那题一样用bellman判断一下能不能成环
但是这道题问的不只是一只牛 而是所有牛 而且成环不成环并不能判断他的排名能不能确定
对于一头牛 如果我们知道有x只牛能赢他 他能赢y只牛 并且x+y=n-1的话 那么他的排名是可以确定的
所以就用floyd跑一遍 就可以把传递的关系建立起来了
emmmm传递闭包?题解上有这么说 但是不是很理解有什么关系......因为用了floyd???
唉离散学了都忘光了 感觉之前学的真的都忘了
然后遍历每一头牛看看行不行
代码:
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<map>
#include<cstring>
#include<queue>
#include<stack>
#define inf 0x3f3f3f3f
using namespace std;
int n, m, d[105][105];
void floyd()
{
for(int k = 1; k <= n; k++){
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++){
if(d[i][k] && d[k][j]){
d[i][j] = 1;
}
}
}
}
}
int main()
{
while(cin>>n>>m){
for(int i = 0; i < m; i++){
int a, b;
cin>>a>>b;
d[a][b] = 1;
}
floyd();
int ans = 0;
for(int i = 1; i <= n; i++){
int num = 0;
for(int j = 1; j <= n; j++){
if(d[i][j] || d[j][i]){
num++;
}
}
if(num == n - 1){
ans++;
}
}
cout<<ans<<endl;
}
return 0;
}
POJ3660 Cow Contest【最短路-floyd】的更多相关文章
- POJ-3660 Cow Contest( 最短路 )
题目链接:http://poj.org/problem?id=3660 Description N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, ar ...
- POJ3660——Cow Contest(Floyd+传递闭包)
Cow Contest DescriptionN (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a prog ...
- POJ3660:Cow Contest(Floyd传递闭包)
Cow Contest Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16941 Accepted: 9447 题目链接 ...
- POJ3660 Cow Contest —— Floyd 传递闭包
题目链接:http://poj.org/problem?id=3660 Cow Contest Time Limit: 1000MS Memory Limit: 65536K Total Subm ...
- POJ-3660.Cow Contest(有向图的传递闭包)
Cow Contest Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 17797 Accepted: 9893 De ...
- POJ3660 Cow Contest floyd传递闭包
Description N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming con ...
- POJ-3660 Cow Contest Floyd传递闭包的应用
题目链接:https://cn.vjudge.net/problem/POJ-3660 题意 有n头牛,每头牛都有一定的能力值,能力值高的牛一定可以打败能力值低的牛 现给出几头牛的能力值相对高低 问在 ...
- POJ 3660 Cow Contest ( 最短路松弛思想应用 && Floyd求传递闭包 )
题意 : 给出 N 头奶牛在比赛的结果,问你最多的能根据给出结果确定其名次的奶牛头数.结果给出的形式为 A B 代表在比赛当中 A 战胜了 B 分析 : 对于一头奶牛来说,如果我们能确定其他 N - ...
- poj3660 Cow Contest(Floyd-Warshall方法求有向图的传递闭包)
poj3660 题意: 有n头牛, 给你m对关系(a, b)表示牛a能打败牛b, 求在给出的这些关系下, 能确定多少牛的排名. 分析: 在这呢先说一下关系闭包: 关系闭包有三种: 自反闭包(r), 对 ...
随机推荐
- Java动态代理和静态代理区别
静态代理 package staticproxy; /** * 接口 * @author newtouch * */ public interface IHello { public void say ...
- python2内置属性
# encoding: utf-8 # module __builtin__ # from (built-in) # by generator 1.145 from __future__ import ...
- C++实现按1的个数排序
题目内容:有一些0.1字符串,将其按1的个数的多少的顺序进行输出. 输入描述:本题只有一组测试数据.输入数据由若干数字组成,它是由若干个0和1组成的数字. 输出描述:对所有输入的数据,按1的个数进行生 ...
- NetBpm 数据库(9)
原文:http://blog.csdn.net/adicovofer/article/details/1718592 关注NetBpm也很久了,可是一直没有静下心来研究,为了生活的琐事,太过浮躁……今 ...
- 解压安装的tomcat, 使用chkconfig命令让tomcat 随机启动,tomcat 变为系统服务
使用解压安装的tomcat包,命令行输入 service tomcat start 会报 tomcat: unrecognized service 错误提示,意思是说系统没有找到该服务. 好了,我们现 ...
- Spring4 Quartz2 动态任务,Spring4整合quartz2.2.3简单动态任务
Spring4 Quartz2 动态任务 Spring4整合quartz2.2.3简单动态任务, Quartz2.2.3简单动态定时任务二, SimpleScheduleBuilder简单定时任务 ...
- 【代码审计】QYKCMS_v4.3.2 任意文件上传漏洞分析
0x00 环境准备 QYKCMS官网:http://www.qykcms.com/ 网站源码版本:QYKCMS_v4.3.2(企业站主题) 程序源码下载:http://bbs.qingyunke. ...
- 使用java连接数据库以后显示“ Establishing SSL connection without server's identity verification is not recommended”的警告如何解决
今天写了一段查询数据库的操作,如下 package MySQL; import java.sql.*; public class MySQL { //JDBC驱动名以及数据库URL static fi ...
- iOS 静态库和动态库(库详解)
什么是库 ? 库就是程序代码的集合,将N个文件组织起来,是共享程序代码的一种方式.库从本质上来说是一种可执行代码的二进制格式,可以被载入内存中执行. 库的分类 开源库:源代码是公开的,可以看到每个实现 ...
- 三个 CSS 预处理器(框架):Sass、LESS 和 Stylus
CSS 预处理器技术已经非常的成熟,而且也涌现出了越来越多的 CSS 的预处理器框架.本文向你介绍使用最为普遍的三款 CSS 预处理器框架,分别是 Sass.Less CSS.Stylus. 首先我们 ...