转自:Pavel's Blog

Now let's say we want to find the LCA for nodes 4 and 9, we will need to traverse the whole tree to compare each node so that we can locate the nodes. Now considering that we start the traversal with the left branch (pre-order traversal) - we have the worst case here with O(n) running time.
Traversing the tree we compare the current node with both of the nodes and if one of them match, it means that one is the LCA on the respective branch. Let's say after traversing the above tree in pre-order  the first node that matches our nodes is 9 (2, 7, 2, 6, 5, 11, 5, 9). So the first obvious thought is that the 4 must be a child of 9, since we're already on the right child of node 5 and the pre-order traversal looks at the node first, then the left child and lastly the right child. Then we note node 9 as the LCA and we don't have to look further anymore.
 
Let's use another case, say we're looking for the LCA of 7 and 9. The first node in our pre-order traversal (2, 7, 2, 6, 5, 11, 5, 9, 4) is 7. Now here we can say that the LCA for the left branch is 7 because again, if the second node is in the same branch, independently of where and how deep it will be in this branch, the LCA will still be 7; thus we don't have to look in this branch anymore. But we still did not look at the right branch, so we keep traversing in a pre-order manner, but now omitting the other nodes: 2, 7, 5, 9. Now we can say that the LCA for that branch is 9. We can also affirm that the LCA for the branch with the root in node 5 is also 9. And in the end we have our nodes both in separate branches, which means that the LCA is the root of those branches - node 2.
 
The algorithm looks as a modified version of a pre-order tree traversal :

 public static Node lowestCommonAncestor(Node root, Node a, Node b) {
if (root == null) {
return null;
} if (root.equals(a) || root.equals(b)) {
// if at least one matched, no need to continue
// this is the LCA for this root
return root;
} Node l = lowestCommonAncestor(root.left, a, b);
Node r = lowestCommonAncestor(root.right, a, b); if (l != null && r != null) {
return root; // nodes are each on a seaparate branch
} // either one node is on one branch,
// or none was found in any of the branches
return l != null ? l : r;
}

For the node used we will use the following class:

 public class Node {
public int data;
public Node right;
public Node left; public Node(int data) {
this.data = data;
}
}

这个问题再follow up一下,就是要找到shortest path in a binary tree between two nodes

 public class Solution {
public static List<Node> shortestPath(Node root, Node a, Node b) {
ArrayList<Node> path1 = new ArrayList<Node>();
ArrayList<Node> path2 = new ArrayList<Node>();
Node LCA = lowestCommonAncestor(root, a, b);
helper(LCA.left, a, b, path1, new ArrayList<Node>());
helper(LCA.right, a, b, path2, new ArrayList<Node>());
Collections.reverse(path1);
path1.add(LCA);
path1.addAll(new ArrayList<Node>(path2));
return path1;
} public void helper(Node root, Node a, Node b, ArrayList<Node> outpath, ArrayList<Node> temp) {
if (root == null) return;
temp.add(root);
if (root == a || root == b) {
outpath = new ArrayList<Node>(temp);
return;
}
helper(root.left, a, b, outpath, temp);
helper(root.right, a, b, outpath, temp);
temp.remove(temp.size()-1);
}
}

别人的Stack做法,未深究 他说First stack is not really needed, a simple list would do - I just like symmetry.

 public static <V> void shortestpath(
Node<V> root, Node<V> a, Node<V> b,
Stack<Node<V>> outputPath) {
if (root == null) {
return;
}
if (root.data.equals(a.data) || root.data.equals(b.data)) {
outputPath.push(root);
return;
} shortestpath(root.left, a, b, outputPath);
shortestpath(root.right, a, b, outputPath); outputPath.push(root);
} public static List<Node> shortestPath(Node root, Node a, Node b) {
Stack<Node> path1 = new Stack<>();
Stack<Node> path2 = new Stack<>(); Node lca = lowestCommonAncestor(root, a, b); // This is to handle the case where one of the nodes IS the LCA
Node r = lca.equals(a) ? a : (lca.equals(b) ? b : lca); shortestpath(r.left, a, b, path1);
shortestpath(r.right, a, b, path2); path1.push(r);
// invert the second path
while (!path2.isEmpty()) {
path1.push(path2.pop());
}
return path1;
}

Summary: Lowest Common Ancestor in a Binary Tree & Shortest Path In a Binary Tree的更多相关文章

  1. Range Minimum Query and Lowest Common Ancestor

    作者:danielp 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAnc ...

  2. A1143. Lowest Common Ancestor

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  3. PAT A1143 Lowest Common Ancestor (30 分)——二叉搜索树,lca

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  4. 1143 Lowest Common Ancestor

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  5. PAT 甲级 1143 Lowest Common Ancestor

    https://pintia.cn/problem-sets/994805342720868352/problems/994805343727501312 The lowest common ance ...

  6. PAT 1143 Lowest Common Ancestor[难][BST性质]

    1143 Lowest Common Ancestor(30 分) The lowest common ancestor (LCA) of two nodes U and V in a tree is ...

  7. [PAT] 1143 Lowest Common Ancestor(30 分)

    1143 Lowest Common Ancestor(30 分)The lowest common ancestor (LCA) of two nodes U and V in a tree is ...

  8. 1143. Lowest Common Ancestor (30)

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  9. PAT 1143 Lowest Common Ancestor

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

随机推荐

  1. vue开发 - 将方法绑定到window对象,给app端调用

    通过jsBridge方法,H5可以调用客户端(ios,android)的内部方法,同样,客户端也需要能调用H5页面里定义的js方法,但是在vue里,所有的方法都是在组件内部声明的,也只能在组件内部调用 ...

  2. java中调用操作系统的命令

    java.lang.Runtime类提供了exec() 方法来执行操作系统的命令. 使用静态的Runtime.getRuntime()方法可以获得当前的java应用程序对应的Runtime类的实例 R ...

  3. C# 递归与非递归算法与数学公式

    1.递归 递归:程序调用自身的编程技巧称为递归(recursion). 优点是:代码简洁,易于理解. 缺点是:运行效率较低. 递归思想:把问题分解成规模更小,但和原问题有着相同解法的问题. 1)下面是 ...

  4. 【CF603E】Pastoral Oddities cdq分治+并查集

    [CF603E]Pastoral Oddities 题意:有n个点,依次加入m条边权为$l_i$的无向边,每次加入后询问:当前图是否存在一个生成子图,满足所有点的度数都是奇数.如果有,输出这个生成子图 ...

  5. html5播放器制作小结

    链接:http://snowinmay.net/6rooms/html/music.php 9月份前的版本: 播放,暂停,点赞,播放状态显示. 9.2版本: 下载歌曲,静音,时间倒计时(点击暂停时倒计 ...

  6. 生成式对抗网络GAN 的研究进展与展望

    生成式对抗网络GAN的研究进展与展望.pdf 摘要: 生成式对抗网络GAN (Generative adversarial networks) 目前已经成为人工智能学界一个热门的研究方向. GAN的基 ...

  7. Git 使用篇一:初步使用GitHub,下载安装git,并上传项目

    首先在MAC上怎么操作. 在gitHub创立一个账户,在创立一个项目,这就不用我说了对吧. 创建完之后是这样的: 接下来,我们打开https://brew.sh 这是下载homebrew的网站,hom ...

  8. ubuntu16.04下笔记本电脑扩展双屏安装过程

    想给笔记本电脑外界一个显示屏,因为科研需要,我的笔记本是windows10加Ubuntu16.04双系统,主要使用Ubuntu系统. 首先是硬件 一个外置显示屏是必须的了,然后我的笔电上只有HDMI接 ...

  9. MySQL复制原理

    mysql从3.23开始提供复制功能,复制指将主库的ddl和dml操作通过binlog文件传送到从库上执行,从而保持主库和从库数据同步.mysql支持一台主库同时向多台从库复制,从库同时也可以作为其他 ...

  10. oracle11gR2 win7_32位客户端连接虚拟机中oracle11gR2 win7_32位服务器方法

    改写服务器中的监听文件(listener.ora和tnsnames.ora) “ora-12541:TNS:无监听程序”问题的解决 ora-12541:TNS:无监听程序,出现这种错误的时候,可以尝试 ...