1.链接地址:

http://poj.org/problem?id=1316

http://bailian.openjudge.cn/practice/1316

2.题目:

总时间限制:
1000ms
内存限制:
65536kB
描述
In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-numbers. For any positive integer n, define d(n) to be n plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example, d(75) = 75 + 7 + 5 = 87. Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers n, d(n), d(d(n)), d(d(d(n))), .... For example, if you start with 33, the next number is 33 + 3 + 3 = 39, the next is 39 + 3 + 9 = 51, the next is 51 + 5 + 1 = 57, and so you generate the sequence

33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ...
The
number n is called a generator of d(n). In the sequence above, 33 is a
generator of 39, 39 is a generator of 51, 51 is a generator of 57, and
so on. Some numbers have more than one generator: for example, 101 has
two generators, 91 and 100. A number with no generators is a
self-number. There are thirteen self-numbers less than 100: 1, 3, 5, 7,
9, 20, 31, 42, 53, 64, 75, 86, and 97.

输入
No input for this problem.
输出
Write a program to output all positive self-numbers less than 10000 in increasing order, one per line.
样例输入
样例输出
1
3
5
7
9
20
31
42
53
64
|
| <-- a lot more numbers
|
9903
9914
9925
9927
9938
9949
9960
9971
9982
9993
来源
Mid-Central USA 1998

3.思路:

4.代码:

 //2010-04-28
//v0.1 create by wuzhihui
#include<iostream>
using namespace std;
#define max 10000
int a[max+]={}; int main()
{
int b,c;
int i;
//memset(a,1,sizeof(a));
for(i=;i<=max;i++)
{
b=c=i;
do
{
b+=(c%);
c=c/;
}while(c!=);
if(b<=max) a[b]=;
}
for(i=;i<=max;i++)
{
if(a[i]==) cout<<i<<endl;
}
//system("pause");
return ;
}

OpenJudge/Poj 1316 Self Numbers的更多相关文章

  1. Poj 1316 Self Numbers(水题)

    一.Description In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called se ...

  2. Poj 2247 Humble Numbers(求只能被2,3,5, 7 整除的数)

    一.题目大意 本题要求写出前5482个仅能被2,3,5, 7 整除的数. 二.题解 这道题从本质上和Poj 1338 Ugly Numbers(数学推导)是一样的原理,只需要在原来的基础上加上7的运算 ...

  3. OpenJudge/Poj 2105 IP Address

    1.链接地址: http://poj.org/problem?id=2105 http://bailian.openjudge.cn/practice/2105 2.题目: IP Address Ti ...

  4. OpenJudge/Poj 1915 Knight Moves

    1.链接地址: http://bailian.openjudge.cn/practice/1915 http://poj.org/problem?id=1915 2.题目: 总Time Limit: ...

  5. OpenJudge/Poj 1163 The Triangle

    1.链接地址: http://bailian.openjudge.cn/practice/1163 http://poj.org/problem?id=1163 2.题目: 总时间限制: 1000ms ...

  6. OpenJudge/Poj 1844 Sum

    1.链接地址: http://bailian.openjudge.cn/practice/1844 http://poj.org/problem?id=1844 2.题目: Sum Time Limi ...

  7. OpenJudge/Poj 1979 Red and Black / OpenJudge 2816 红与黑

    1.链接地址: http://bailian.openjudge.cn/practice/1979 http://poj.org/problem?id=1979 2.题目: 总时间限制: 1000ms ...

  8. OpenJudge/Poj 1207 The 3n + 1 problem

    1.链接地址: http://bailian.openjudge.cn/practice/1207/ http://poj.org/problem?id=1207 2.题目: 总时间限制: 1000m ...

  9. OpenJudge/Poj 1005 I Think I Need a Houseboat

    1.链接地址: http://bailian.openjudge.cn/practice/1005/ http://poj.org/problem?id=1005 2.题目: I Think I Ne ...

随机推荐

  1. mybatis的辅助类

    package org.ssi.util; import java.io.InputStream; import org.apache.ibatis.session.SqlSession; impor ...

  2. .@RequestMapping 使用方法

    1.@RequestMapping  使用方法  SpringMVC中,@RequestMapping用来处理请求,比方XXX.do @RequestMapping("/aaa") ...

  3. go strings 常用的几个函数

    fmt.Println(strings.ToUpper("hello world")) //转换为大写    fmt.Println(strings.ToLower("H ...

  4. BZOJ 1878: [SDOI2009]HH的项链 离线树状数组

    1878: [SDOI2009]HH的项链 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  5. spring关于“transactionAttributes”的相关配置

    spring关于"transactionAttributes"的相关配置 <bean id="baseTransactionProxy" class=&q ...

  6. 12.1 文档相关 Webbrowser 该文档已被修改,是否保存修改结果

       附件:http://files.cnblogs.com/xe2011/Webbrowser_Document_IsModified.rar   该文档已被修改,是否保存修改结果?是:保存修改结果 ...

  7. 0 Explore TreeView

    尽可能接近WINDOWS 8的资源管理器效果(这里只模仿它的效果,处理文件功能不包括在内)   TREEVIEW可以增加空白并且空白处不能单击 重绘三角箭头 重绘选中时的边框和填充色 重绘失去焦点时选 ...

  8. android117 下拉列表

  9. img图片下有个间隙是为什么

    转自知乎:http://www.zhihu.com/question/21558138要理解这个问题,首先要弄明白CSS对于 display: inline 元素的 vertical-align 各个 ...

  10. [Effective C++ --024]若所有参数皆需类型转换,请为此采用non-member函数

    引言 假设我们有这样的类: class A{ public: A(, ) {}; int num() const; int den() const; const A operator* (const ...