【概率】Uva 10900 - So you want to be a 2n-aire?
写完这题赶紧开新题...
话说这题让我重新翻了概率论课本,果然突击完了接着还给老师了,毫无卵用。
很多人拿这位大神的题解作引,在这我也分享给大家~
对于其中的公式在这里做一点简要的说明。因为自己也是理解了一会儿才明白的。
TIPs:
1、设d[i]为答对第i道题后拥有奖金的期望值。
2、对于第i+1道题,我们可以有两种选择:答,不答;
如果不答,那么奖金便到2i为止;
如果答,答错的话,奖金当然为0;答对的话,奖金会变为P*d[i+1](这是一个期望值,也可以说是平均值,或者可以这样理解,选择答题的话获得奖金的期望=(1-P)*0 + P*d[i+1],答错没奖金,答对的话奖金当然就是它咯);
现在问题来了,此处的P为答对第i+1题的概率,这个概率会是多少呢。
首先我们考虑一个问题,什么情况下你会选择答题?
还用想啊当然是答题的奖金期望比不答的多咯!这也就是:
P*d[i+1] > 2i(注意此处答对第i+1题的奖金期望并不是2i+1)
转化一下就是,这个P>2i/d[i+1]的时候,答对题目拿奖金的概率就会比较大,我们会选择答题;
令ep=2i/d[i+1],考虑tmp的范围:
当ep<t时,因为选手答对题的概率在(t,1)间均匀分布,所以选手答对题目的概率会很大,那么我们会让选手答题,答题的概率为(1-max(t,ep))/(1-t);
当ep>t时,选手答对与答错的判断不确定,选择答题的概率为(1-max(t,ep))/(1-t);
注意此处的max(t,ep),如果ep<t的话答题的概率为(1-t)/(1-t);而如果ep>t,根据均匀分布的分布函数我们可以知道答题的概率为(1-ep)/(1-t),故可以化为一个式子(1-max(t,ep))/(1-t);
而之前讨论的答对题目的概率P,因为ep<P<1,根据均匀分布的数学期望可知EP=(1+ep)/2;
3、那么我们现在可以求答对第i题后奖金的期望值d[i]了:
我们选择不答的概率为(ep-t)/(1-t),此时拿奖金2i
我们选择答题的概率为(1-ep)/(1-t),此时拿奖金(1+ep)/2 * d[i+1];
故d[i]=(ep-t)/(1-t) * 2i + (1-ep)/(1-t) * ((1+ep)/2*d[i+1]);
4、这题需要逆推,一共i道题,那么d[i]=2i
最后求d[0]即可。
代码就不附了吧...
【概率】Uva 10900 - So you want to be a 2n-aire?的更多相关文章
- UVa 10900 So you want to be a 2n-aire? (概率DP,数学)
题意:一 个答题赢奖金的问题,玩家初始的金额为1,给出n,表示有n道题目,t表示说答对一道题目的概率在t到1之间,每次面对一道题,可以选择结束游戏, 获得当 前奖金:回答下一道问题,答对的概率p在t到 ...
- UVa 10900 (连续概率、递推) So you want to be a 2n-aire?
题意: 初始奖金为1块钱,有n个问题,连续回答对i个问题后,奖金变为2i元. 回答对每道题的概率在t~1之间均匀分布. 听到问题后有两个选择: 放弃回答,拿走已得到的奖金 回答问题: 如果回答正确,奖 ...
- So you want to be a 2n-aire? UVA - 10900(概率)
题意: 初始值为1, 每次回答一个问题,如果答对初始值乘2,答错归0,结束,一共有n个问题,求在最优的策略下,最后值的期望值 解析: 注意题中的一句话 每个问题的答对概率在t和1之间均匀分布 也就 ...
- UVA 10900 So you want to be a 2n-aire? (概率dp)
题意:玩家初始的金额为1:给出n,表示有n道题目:t表示说答对一道题目的概率在t到1之间均匀分布. 每次面对一道题,可以选择结束游戏,获得当前奖金:或者回答下一道问题,答对的话奖金翻倍,答错的话结束游 ...
- 紫书 例题 10-20 UVa 10900(连续概率)
分两类,当前第i题答或不答 如果不回答的话最大期望奖金为2的i次方 如果回答的话等于p* 下一道题的最大期望奖金 那么显然我们要取最大值 所以就要分类讨论 我们设答对i题后的最大期望奖金为d[i] 显 ...
- 概率dp - Uva 10900 So you want to be a 2n-aire?
So you want to be a 2n-aire? Problem's Link Mean: 玩一个答题赢奖金的游戏,一开始有1块钱,玩n次,每次赢的概率为t~1之间的某个实数. 给定n和t,求 ...
- UVa 10900 - So you want to be a 2n-aire?(期望DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVa 10900 - So you want to be a 2n-aire?
题目大意: 一个答题赢奖金的问题,玩家初始的金额为1,给出n,表示有n道题目,t表示说答对一道题目的概率在t到1之间,每次面对一道题,可以选择结束游戏,获得当前奖金:回答下一道问题,答对的概率p在t到 ...
- UVA 10900 So you want to be a 2n-aire? 2元富翁 (数学期望,贪心)
题意:你一开始有1元钱,接下来又n<=30个问题,只需答对1个问题手上的钱就翻倍,最多答对n个,得到的钱是2n.而每个问题答对的概率是[t,1]之间平均分布,那么问最优情况下得到奖金的期望值是多 ...
随机推荐
- struts2+Hibernate4+spring3+EasyUI环境搭建之三:引入sututs2以及spring与sututs2整合
1.引入struts2 <!-- struts2 和心包 排除javassist 因为hibernate也有 会发生冲突--> <dependency> <groupId ...
- Java设计模式系列之适配器模式
适配器模式的定义 将一个类的接口转换成客户希望的另外一个接口.Adapter模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作.(就类似于我们充电器的转接头将220V的电压转换成我们的手机端 ...
- Serializable 序列化使用限制
序列化不能跨语言 如果单纯为了传数据,完全可以被json代替.
- python crawler0723.py
#!/usr/env python #-*- coding: utf-8 -*- import urllib import urllib2 import random import request ...
- application/xml和text/xml的区别
XML有两个MIME类型,application/xml和text/xml,它们之间的区别是: text/xml忽略xml文件头中的关于编码的设定(<?xml version="1.0 ...
- iOS 中的UIWindow
使用Xcode新建一个工程后,Xcode会自动新建一些文件,其中有AppDelegate.h,AppDelegate.m,ViewController.h,ViewController.m,Main. ...
- shiro安全框架
原文:http://blog.csdn.net/boonya/article/details/8233303 可能大家早先会见过 J-security,这个是 Shiro 的前身.在 2009 年 3 ...
- npm package 装包匹配原则
经常看到package.json 里面有这样的devDependencies: "devDependencies": { "@angular/common": ...
- Struts2内建校验器(基于校验框架的文件校验)
位于xwork-2.0.4.jar压缩包中( com.opensymphony.xwork2.validator.validators)有个文件default.xml ,该文件中定义了Struts2框 ...
- python的一些总结4
这篇继续水 但是在水的的基础上 让搭建能正常使用flask 搭建一个站 上篇讲到在 模板view中 输入{{xx }} 可以打印 后台传的值. 这篇讲一下 循环控制 条件控制等 修改后台代码: @ap ...