Domination

Time Limit: 1 Sec

Memory Limit: 256 MB

题目连接

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3822

Description

Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows and M columns.

Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominatedby the chess pieces. That means there is at least one chess piece in every row. Also, there is at least one chess piece in every column.

"That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help him.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

There are only two integers N and M (1 <= NM <= 50).

Output

For each test case, output the expectation number of days.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input

2
1 3
2 2
 

Sample Output

3.000000000000
2.666666666667

HINT

题意

每次这个人会随机选择一个空格子扔棋子,然后问你期望扔多少次,可以把n*m的矩阵,每一行和每一列都至少有一个棋子

题解:

期望dp,用容斥做

dp[i][j][k]表示占领了i行j列,用了k个

代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <vector>
#include <stack>
#include <map>
#include <set>
#include <queue>
#include <iomanip>
#include <string>
#include <ctime>
#include <list>
#include <bitset>
typedef unsigned char byte;
#define pb push_back
#define input_fast std::ios::sync_with_stdio(false);std::cin.tie(0)
#define local freopen("in.txt","r",stdin)
#define pi acos(-1) using namespace std;
const int maxn = + ;
double dp[maxn][maxn][maxn*maxn];
int n , m ; inline double GetDouble(int x)
{
return (double)x;
} void initiation()
{
memset(dp,-,sizeof(dp));
scanf("%d%d",&n,&m);
} double dfs(int x,int y,int k)
{
if(dp[x][y][k]> -0.5) return dp[x][y][k];
double & ans = dp[x][y][k] = ;
if(x == n && y == m ) return ans;
int all = m*n-k;
if(x*y != k) ans += dfs(x,y,k+)*GetDouble(x*y-k)/GetDouble(all);
if(x != n && y != m) ans += dfs(x+,y+,k+)*GetDouble((n-x)*(m-y))/GetDouble(all);
if(x != n && y != ) ans += dfs(x+,y,k+)*GetDouble(y*(n-x))/GetDouble(all);
if(y != m && x != ) ans += dfs(x,y+,k+)*GetDouble(x*(m-y))/GetDouble(all);
ans += ;
return ans;
} double solve()
{
return dfs(,,);
} int main(int argc,char *argv[])
{
int Case;
scanf("%d",&Case);
while(Case--)
{
initiation();
printf("%.12lf\n",solve());
}
return ;
}

ZOJ 3822 Domination 期望dp的更多相关文章

  1. zoj 3822 Domination (概率dp 天数期望)

    题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...

  2. zoj 3822 Domination 概率dp 2014牡丹江站D题

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  3. ZOJ 3822 Domination(概率dp)

    一个n行m列的棋盘,每天可以放一个棋子,问要使得棋盘的每行每列都至少有一个棋子 需要的放棋子天数的期望. dp[i][j][k]表示用了k天棋子共能占领棋盘的i行j列的概率. 他的放置策略是,每放一次 ...

  4. zoj 3822 Domination (可能性DP)

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  5. ZOJ - 3822 Domination (DP)

    Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess ...

  6. ZOJ 3822 Domination 概率dp 难度:0

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  7. ZOJ 3822 Domination(概率dp 牡丹江现场赛)

    题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...

  8. zoj 3822 Domination(dp)

    题目链接:zoj 3822 Domination 题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望. 解题思路:大白书上概率那一张有一 ...

  9. zoj 3822(概率dp)

    ZOJ Problem Set - 3822 Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Ju ...

随机推荐

  1. chinacloud大数据新闻

    2015年大数据发展八大趋势   (0 篇回复) “数据很丰满,信息很骨感”:Sight Machine想用大数据的方法,打碎两者间的屏障   (0 篇回复) 百度携大数据"圈地" ...

  2. hdu4614Vases and Flowers

    http://acm.hdu.edu.cn/showproblem.php?pid=4614 线段树的各种操作 写的有点乱 求插入位置是以区间K值的方法求出的 向下更新 #include <io ...

  3. 根据block取出space_id

    /*********************************************************************//** Gets the space id of a bl ...

  4. bzoj3940: [Usaco2015 Feb]Censoring

    AC自动机.为什么洛谷水题赛会出现这种题然而并不会那么题意就不说啦 .终于会写AC自动机判断是否是子串啦...用到kmp的就可以用AC自动机水过去啦 #include<cstdio> #i ...

  5. EF Code First 学习笔记:表映射

    多个实体映射到一张表 Code First允许将多个实体映射到同一张表上,实体必须遵循如下规则: 实体必须是一对一关系 实体必须共享一个公共键 观察下面两个实体: public class Perso ...

  6. IOS 多线程 NSOperation GCD

    1.NSInvocationOperation NSInvocationOperation * op; NSOperationQueue * que = [[NSOperationQueuealloc ...

  7. 树莓PI安装jdk1.8,ant,maven【转】

    http://the.taoofmac.com/space/hw/RaspberryPi/JDK%20Installation jdk--------------------------------- ...

  8. C语言断言

    1.概述 断言是对某种假设条件进行检查(可理解为若条件成立则无动作,否则应报告),它可以快速发现并定位软件问题,同时对系统错误进行自动报警.断言可以对在系统中隐藏很深,用其它手段极难发现的问题进行定位 ...

  9. bzoj 2244 [SDOI2011]拦截导弹(DP+CDQ分治+BIT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2244 [题意] 给定n个二元组,求出最长不上升子序列和各颗导弹被拦截的概率. [思路] ...

  10. uva 11995 I Can Guess the Data Structure stack,queue,priority_queue

    题意:给你n个操做,判断是那种数据结构. #include<iostream> #include<cstdio> #include<cstdlib> #includ ...