matlab特征值分解和奇异值分解
特征值分解
函数 eig
格式 d = eig(A) %求矩阵A的特征值d,以向量形式存放d。
d = eig(A,B) %A、B为方阵,求广义特征值d,以向量形式存放d。
[V,D] = eig(A) %计算A的特征值对角阵D和特征向量V,使AV=VD成立。
[V,D] = eig(A,'nobalance') %当矩阵A中有与截断误差数量级相差不远的值时,该指令可能更精确。'nobalance'起误差调节作用。
[V,D] = eig(A,B) %计算广义特征值向量阵V和广义特征值阵D,满足AV=BVD。
[V,D] = eig(A,B,flag) % 由flag指定算法计算特征值D和特征向量V,flag的可能值为:'chol' 表示对B使用Cholesky分解算法,这里A为对称Hermitian矩阵,B为正定阵。'qz' 表示使用QZ算法,这里A、B为非对称或非Hermitian矩阵。
说明 一般特征值问题是求解方程: 解的问题。广义特征值问题是求方程: 解的问题。
奇异值分解
函数 svd
格式 s = svd (X) %返回矩阵X的奇异值向量
[U,S,V] = svd (X) %返回一个与X同大小的对角矩阵S,两个酉矩阵U和V,且满足= U*S*V'。若A为m×n阵,则U为m×m阵,V为n×n阵。奇异值在S的对角线上,非负且按降序排列。
[U,S,V] = svd (X,0) %得到一个“有效大小”的分解,只计算出矩阵U的前n列,矩阵S的大小为n×n。

奇异值分解压缩图像
clear all;
close all;
clc; a=imread('C:\Users\ranji\Desktop\rgb_image.jpg'); imshow(mat2gray(a))
[m n]=size(a);
a=double(a);
%r=rank(a);
[s v d]=svd(a(:,:,1)); %取一个分量 %re=s*v*d';
re=s(:,:)*v(:,1:1)*d(:,1:1)';
figure;
imshow(mat2gray(re));
imwrite(mat2gray(re),'C:\Users\ranji\Desktop\1.jpg')
re1=s(:,:)*v(:,1:20)*d(:,1:20)';
figure;
imshow(mat2gray(re));
imwrite(mat2gray(re),'C:\Users\ranji\Desktop\2.jpg')
re=s(:,:)*v(:,1:80)*d(:,1:80)';
figure;
imshow(mat2gray(re));
imwrite(mat2gray(re),'C:\Users\ranji\Desktop\3.jpg')
re=s(:,:)*v(:,1:150)*d(:,1:150)';
figure;
imshow(mat2gray(re));
imwrite(mat2gray(re),'C:\Users\ranji\Desktop\4.jpg')

不同特征值进行重构的效果。。。
最后说一些奇异值分解的应用:
1.图像压缩,正如上面的。
2.噪声滤波。
3.模式识别。因为svd就是提取主要的成分嘛。
4.生物,物理,经济方面的一些统计模型的处理。
matlab特征值分解和奇异值分解的更多相关文章
- 特征值分解,奇异值分解(SVD)
特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征. 1. 特征值: 如果说一个向 ...
- 数学基础系列(六)----特征值分解和奇异值分解(SVD)
一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可 ...
- 讲一下numpy的矩阵特征值分解与奇异值分解
1.特征值分解 主要还是调包: from numpy.linalg import eig 特征值分解: A = P*B*PT 当然也可以写成 A = QT*B*Q 其中B为对角元为A的特征值的对 ...
- 特征值分解与奇异值分解(SVD)
1.使用QR分解获取特征值和特征向量 将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R.由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项. 2.奇异值分解(SVD) 其 ...
- 【ML】从特征分解,奇异值分解到主成分分析
1.理解特征值,特征向量 一个对角阵\(A\),用它做变换时,自然坐标系的坐标轴不会发生旋转变化,而只会发生伸缩,且伸缩的比例就是\(A\)中对角线对应的数值大小. 对于普通矩阵\(A\)来说,是不是 ...
- 【SVD、特征值分解、PCA关系】
一.SVD 1.含义: 把矩阵分解为缩放矩阵+旋转矩阵+特征向量矩阵. A矩阵的作用是将一个向量从V这组正交基向量的空间旋转到U这组正交基向量的空间,并对每个方向进行了一定的缩放,缩放因子就是各 ...
- 【转】matlab练习程序(奇异值分解压缩图像)
介绍一下奇异值分解来压缩图像.今年的上半年中的一篇博客贴了一篇用奇异值分解处理pca问题的程序,当时用的是图像序列,是把图像序列中的不同部分分离开来.这里是用的不是图像序列了,只是单单的一幅图像,所以 ...
- 学习笔记DL006:特征分解,奇异值分解
特征分解. 整数分解质因素. 特征分解(eigendecomposition),使用最广,矩阵分解一组特征向量.特征值.方阵
- MATLAB字符串分解, 合并
% 分解 % regexp s = 'ab/c/d.png' file_name = regexp(s, '/', 'split'); % 'd.png' % split fractions = sp ...
随机推荐
- Linux内核的同步机制
本文详细的介绍了Linux内核中的同步机制:原子操作.信号量.读写信号量和自旋锁的API,使用要求以及一些典型示例 一.引言 在现代操作系统里,同一时间可能有多个内核执行流在执行,因此内核其实象多进程 ...
- ipconfig
当使用ipconfig时不带任何参数选项,那么它为每个已经配置了的接口显示IP地址.子网掩码和缺省网关值. 如果你安装了虚拟机和无线网卡的话,它们的相关信息也会出现在这里.
- QT源码解析(一) QT创建窗口程序、消息循环和WinMain函数
QT源码解析(一) QT创建窗口程序.消息循环和WinMain函数 分类: QT2009-10-28 13:33 17695人阅读 评论(13) 收藏 举报 qtapplicationwindowse ...
- 转:在MyEclipse下创建Java Web项目 入门(图文并茂)经典教程
本文是一篇在Myeclipse下构建Java Web项目的初级教程.图文并茂,非常详细.所用的Myeclipse版本是7.5. 第一步:新建Web Project,如下图. 第二步,在弹出的窗口填写下 ...
- linux 开机自启动软件(包含xampp方法)
linux设置apache和mysql: linux开启启动的程序一般放在/etc/rc.d/init.d/里面,/etc/init.d/是其软连接. mysql设为linux服务 cp /usr/l ...
- java中四种操作(dom、sax、jdom、dom4j)xml方式详解与比较
1)DOM(JAXP Crimson解析器) DOM是用与平台和语言无关的方式表示XML文档的官方W3C标准.DOM是以层次结构组织的节点或信息片断的集合.这个层次结构允许开发人员在树中寻找特 ...
- ASP.NET MVC 学习7、为Model Class的字段添加验证属性(validation attribuate)
Adding Validation to the Model ,在Model中添加数据验证 参考:http://www.asp.net/mvc/tutorials/mvc-4/getting-star ...
- SharePoint的安装配置
安装环境 1. Window server 2008 r2(sp2) OS.2. MS SQL Server 2008 r2.3. Office2010.4. IIS7以上.5. 确认服务器已经加入域 ...
- bzoj1054: [HAOI2008]移动玩具
hash+bfs:要注意特殊情况.(似乎连sort.lower_bound都不用数据小直接判重了... #include<cstdio> #include<cstring> # ...
- Self-Paced Training (3) - Docker Operations
AgendaTroubleshooting ContainersOverview of Security PracticesPrivate RegistryIntro to Docker Machin ...


