matlab特征值分解和奇异值分解
特征值分解
函数 eig
格式 d = eig(A) %求矩阵A的特征值d,以向量形式存放d。
d = eig(A,B) %A、B为方阵,求广义特征值d,以向量形式存放d。
[V,D] = eig(A) %计算A的特征值对角阵D和特征向量V,使AV=VD成立。
[V,D] = eig(A,'nobalance') %当矩阵A中有与截断误差数量级相差不远的值时,该指令可能更精确。'nobalance'起误差调节作用。
[V,D] = eig(A,B) %计算广义特征值向量阵V和广义特征值阵D,满足AV=BVD。
[V,D] = eig(A,B,flag) % 由flag指定算法计算特征值D和特征向量V,flag的可能值为:'chol' 表示对B使用Cholesky分解算法,这里A为对称Hermitian矩阵,B为正定阵。'qz' 表示使用QZ算法,这里A、B为非对称或非Hermitian矩阵。
说明 一般特征值问题是求解方程: 解的问题。广义特征值问题是求方程: 解的问题。
奇异值分解
函数 svd
格式 s = svd (X) %返回矩阵X的奇异值向量
[U,S,V] = svd (X) %返回一个与X同大小的对角矩阵S,两个酉矩阵U和V,且满足= U*S*V'。若A为m×n阵,则U为m×m阵,V为n×n阵。奇异值在S的对角线上,非负且按降序排列。
[U,S,V] = svd (X,0) %得到一个“有效大小”的分解,只计算出矩阵U的前n列,矩阵S的大小为n×n。

奇异值分解压缩图像
clear all;
close all;
clc; a=imread('C:\Users\ranji\Desktop\rgb_image.jpg'); imshow(mat2gray(a))
[m n]=size(a);
a=double(a);
%r=rank(a);
[s v d]=svd(a(:,:,1)); %取一个分量 %re=s*v*d';
re=s(:,:)*v(:,1:1)*d(:,1:1)';
figure;
imshow(mat2gray(re));
imwrite(mat2gray(re),'C:\Users\ranji\Desktop\1.jpg')
re1=s(:,:)*v(:,1:20)*d(:,1:20)';
figure;
imshow(mat2gray(re));
imwrite(mat2gray(re),'C:\Users\ranji\Desktop\2.jpg')
re=s(:,:)*v(:,1:80)*d(:,1:80)';
figure;
imshow(mat2gray(re));
imwrite(mat2gray(re),'C:\Users\ranji\Desktop\3.jpg')
re=s(:,:)*v(:,1:150)*d(:,1:150)';
figure;
imshow(mat2gray(re));
imwrite(mat2gray(re),'C:\Users\ranji\Desktop\4.jpg')

不同特征值进行重构的效果。。。
最后说一些奇异值分解的应用:
1.图像压缩,正如上面的。
2.噪声滤波。
3.模式识别。因为svd就是提取主要的成分嘛。
4.生物,物理,经济方面的一些统计模型的处理。
matlab特征值分解和奇异值分解的更多相关文章
- 特征值分解,奇异值分解(SVD)
特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征. 1. 特征值: 如果说一个向 ...
- 数学基础系列(六)----特征值分解和奇异值分解(SVD)
一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可 ...
- 讲一下numpy的矩阵特征值分解与奇异值分解
1.特征值分解 主要还是调包: from numpy.linalg import eig 特征值分解: A = P*B*PT 当然也可以写成 A = QT*B*Q 其中B为对角元为A的特征值的对 ...
- 特征值分解与奇异值分解(SVD)
1.使用QR分解获取特征值和特征向量 将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R.由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项. 2.奇异值分解(SVD) 其 ...
- 【ML】从特征分解,奇异值分解到主成分分析
1.理解特征值,特征向量 一个对角阵\(A\),用它做变换时,自然坐标系的坐标轴不会发生旋转变化,而只会发生伸缩,且伸缩的比例就是\(A\)中对角线对应的数值大小. 对于普通矩阵\(A\)来说,是不是 ...
- 【SVD、特征值分解、PCA关系】
一.SVD 1.含义: 把矩阵分解为缩放矩阵+旋转矩阵+特征向量矩阵. A矩阵的作用是将一个向量从V这组正交基向量的空间旋转到U这组正交基向量的空间,并对每个方向进行了一定的缩放,缩放因子就是各 ...
- 【转】matlab练习程序(奇异值分解压缩图像)
介绍一下奇异值分解来压缩图像.今年的上半年中的一篇博客贴了一篇用奇异值分解处理pca问题的程序,当时用的是图像序列,是把图像序列中的不同部分分离开来.这里是用的不是图像序列了,只是单单的一幅图像,所以 ...
- 学习笔记DL006:特征分解,奇异值分解
特征分解. 整数分解质因素. 特征分解(eigendecomposition),使用最广,矩阵分解一组特征向量.特征值.方阵
- MATLAB字符串分解, 合并
% 分解 % regexp s = 'ab/c/d.png' file_name = regexp(s, '/', 'split'); % 'd.png' % split fractions = sp ...
随机推荐
- Android:单元测试
通过单元测试的方法可以轻松判断BUG 第一步:首先在AndroidManifest.xml中加入下面红色代码: 打开AndroidManifest.xml,选择instrumentation ,选择N ...
- PowerDesigner连接Oracle数据库建表序列号实现自动增长
原文:PowerDesigner连接Oracle数据库建表序列号实现自动增长 创建表就不说了.下面开始介绍设置自动增长列. 1 在表视图的列上创建.双击表视图,打开table properties — ...
- [iOS]利用Appicon and Launchimage Maker生成并配置iOSApp的图标和启动页
一.先来研究下这个软件->Appicon and Launchimage Maker 首先打开你电脑上的AppStore,然后搜索:AppIcon 然后回车: 这里我们先使用免费版的点击下载.( ...
- pinyin4j
最近在倒腾与搜索相关的拼音检查技术,顺便看了一下中文转拼音开源插件pinyin4j的源码,参考资料:http://blog.csdn.net/hfhwfw/archive/2010/11/23/603 ...
- PCL—低层次视觉—点云分割(基于凹凸性)
1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割算法是实现复杂功能的基础.但是大家搞了几十年也还没搞定——不是我说的,是接下来要介绍的这篇论文说的.图像分割 ...
- (五)CSS伪类(Pseudo-class)
CSS伪类用于向某些选择器添加特殊的效果.伪类的语法如下: selector : pseudo-class {property: value} CSS类也可以与伪类搭配使用: selector.cla ...
- vi编辑器基本用法介绍
vi是Linux系统中编写文件的工具 如果vi出现乱码情况,需要升级vi,命令如下: sudo apt-get install vim //升级vi vi的启动方式有两种,直接使用vi命令和在vi命 ...
- 数据库锁机制(一)——概述
注:内容为自己的推理认知+网络,如有错误和不合理之处,敬请指出. 在多线程环境中我用使用线程锁处理并发问题,而在数据库系统中,并发问题可以细化到事务级别,而DBMS对此的处理方案就是使用锁. 为了适应 ...
- BZOJ2086: [Poi2010]Blocks
题解: 想了想发现只需要求出最长的一段平均值>k即可. 平均值的问题给每个数减去k,判断是否连续的一段>0即可. 然后我们发现如果i<j 且 s[i]<s[j],那么 j 对于 ...
- Linux中 干掉原来的PHP方法
干掉原来的PHP方法: 查看php版本命令:#php -v这个命令是删除不干净的#yum remove php因为使用这个命令以后再用#php -v还是会看到有版本信息的..... 必须强制删除#rp ...


