matlab特征值分解和奇异值分解
特征值分解
函数 eig
格式 d = eig(A) %求矩阵A的特征值d,以向量形式存放d。
d = eig(A,B) %A、B为方阵,求广义特征值d,以向量形式存放d。
[V,D] = eig(A) %计算A的特征值对角阵D和特征向量V,使AV=VD成立。
[V,D] = eig(A,'nobalance') %当矩阵A中有与截断误差数量级相差不远的值时,该指令可能更精确。'nobalance'起误差调节作用。
[V,D] = eig(A,B) %计算广义特征值向量阵V和广义特征值阵D,满足AV=BVD。
[V,D] = eig(A,B,flag) % 由flag指定算法计算特征值D和特征向量V,flag的可能值为:'chol' 表示对B使用Cholesky分解算法,这里A为对称Hermitian矩阵,B为正定阵。'qz' 表示使用QZ算法,这里A、B为非对称或非Hermitian矩阵。
说明 一般特征值问题是求解方程: 解的问题。广义特征值问题是求方程: 解的问题。
奇异值分解
函数 svd
格式 s = svd (X) %返回矩阵X的奇异值向量
[U,S,V] = svd (X) %返回一个与X同大小的对角矩阵S,两个酉矩阵U和V,且满足= U*S*V'。若A为m×n阵,则U为m×m阵,V为n×n阵。奇异值在S的对角线上,非负且按降序排列。
[U,S,V] = svd (X,0) %得到一个“有效大小”的分解,只计算出矩阵U的前n列,矩阵S的大小为n×n。
奇异值分解压缩图像
clear all;
close all;
clc; a=imread('C:\Users\ranji\Desktop\rgb_image.jpg'); imshow(mat2gray(a))
[m n]=size(a);
a=double(a);
%r=rank(a);
[s v d]=svd(a(:,:,1)); %取一个分量 %re=s*v*d';
re=s(:,:)*v(:,1:1)*d(:,1:1)';
figure;
imshow(mat2gray(re));
imwrite(mat2gray(re),'C:\Users\ranji\Desktop\1.jpg')
re1=s(:,:)*v(:,1:20)*d(:,1:20)';
figure;
imshow(mat2gray(re));
imwrite(mat2gray(re),'C:\Users\ranji\Desktop\2.jpg')
re=s(:,:)*v(:,1:80)*d(:,1:80)';
figure;
imshow(mat2gray(re));
imwrite(mat2gray(re),'C:\Users\ranji\Desktop\3.jpg')
re=s(:,:)*v(:,1:150)*d(:,1:150)';
figure;
imshow(mat2gray(re));
imwrite(mat2gray(re),'C:\Users\ranji\Desktop\4.jpg')
不同特征值进行重构的效果。。。
最后说一些奇异值分解的应用:
1.图像压缩,正如上面的。
2.噪声滤波。
3.模式识别。因为svd就是提取主要的成分嘛。
4.生物,物理,经济方面的一些统计模型的处理。
matlab特征值分解和奇异值分解的更多相关文章
- 特征值分解,奇异值分解(SVD)
特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征. 1. 特征值: 如果说一个向 ...
- 数学基础系列(六)----特征值分解和奇异值分解(SVD)
一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可 ...
- 讲一下numpy的矩阵特征值分解与奇异值分解
1.特征值分解 主要还是调包: from numpy.linalg import eig 特征值分解: A = P*B*PT 当然也可以写成 A = QT*B*Q 其中B为对角元为A的特征值的对 ...
- 特征值分解与奇异值分解(SVD)
1.使用QR分解获取特征值和特征向量 将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R.由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项. 2.奇异值分解(SVD) 其 ...
- 【ML】从特征分解,奇异值分解到主成分分析
1.理解特征值,特征向量 一个对角阵\(A\),用它做变换时,自然坐标系的坐标轴不会发生旋转变化,而只会发生伸缩,且伸缩的比例就是\(A\)中对角线对应的数值大小. 对于普通矩阵\(A\)来说,是不是 ...
- 【SVD、特征值分解、PCA关系】
一.SVD 1.含义: 把矩阵分解为缩放矩阵+旋转矩阵+特征向量矩阵. A矩阵的作用是将一个向量从V这组正交基向量的空间旋转到U这组正交基向量的空间,并对每个方向进行了一定的缩放,缩放因子就是各 ...
- 【转】matlab练习程序(奇异值分解压缩图像)
介绍一下奇异值分解来压缩图像.今年的上半年中的一篇博客贴了一篇用奇异值分解处理pca问题的程序,当时用的是图像序列,是把图像序列中的不同部分分离开来.这里是用的不是图像序列了,只是单单的一幅图像,所以 ...
- 学习笔记DL006:特征分解,奇异值分解
特征分解. 整数分解质因素. 特征分解(eigendecomposition),使用最广,矩阵分解一组特征向量.特征值.方阵
- MATLAB字符串分解, 合并
% 分解 % regexp s = 'ab/c/d.png' file_name = regexp(s, '/', 'split'); % 'd.png' % split fractions = sp ...
随机推荐
- React用JS 模拟动画介绍
一. <!DOCTYPE html> <html lang="zh-cn"> <head> <meta charset="UTF ...
- Java NIO1
发现了一个很好的学习Java的外国网站,英语都是很简单的啦,看英语舒服些,关于NIO的系列就直接参照此网站了,而且是英语的! http://tutorials.jenkov.com/ Java NIO ...
- BitMask 使用参考
对于 Java 类应用,内存方面需要注意: 不要占用大量内存,否则可用内存少:触发 GC 或 OutOfMemoryError: 不要频繁创建对象,频繁内存分配,触发 GC. 对于枚举和常量: 使用枚 ...
- CMake学习(1)---简单程序与库
cmake是linux平台下重要的工具,可以方便的组织makefile.之前一直在windows平台下进行软件开发,在vs2010的IDE里,只要一点run程序就能跑出结果.但是程序的编译并没有那么简 ...
- ActiveMQ 集群(1)
Queue consumer clusters(消费者集群): 简介: 同一个queue,如果一个消费者失效, 那么任何未经确认的消息将会被发送给queue上的其它消费者.如果一个消费者比其它消费者执 ...
- onlineDDL测试
onlineDDL语法: alter table ALTER [COLUMN] col_name {SET DEFAULT literal | DROP DEFAULT} ADD [COLUMN] c ...
- POJ 1707 Sum of powers(伯努利数)
题目链接:http://poj.org/problem?id=1707 题意:给出n 在M为正整数且尽量小的前提下,使得n的系数均为整数. 思路: i64 Gcd(i64 x,i64 y) { if( ...
- OEM - emctl resetTZ agent 设置时区
[oracle@redhat4 config]$ cd $ORACLE_HOME/redhat4.7_orcl/sysman/config [oracle@redhat4 config]$ pwd/u ...
- OEM status|start|stop
OEM一旦建立以后,LINUX的主机名(hosts)就不要去改变. [oracle@redhat4 ~]$ emctl start dbconsoleOC4J Configuration issue. ...
- [转载]Python模块学习 ---- subprocess 创建子进程
[转自]http://blog.sciencenet.cn/blog-600900-499638.html 最近,我们老大要我写一个守护者程序,对服务器进程进行守护.如果服务器不幸挂掉了,守护者能即时 ...