数理方程:Fourier级数
更新:25 MAR 2016
对于周期函数(周期为\(2\pi\))或定义在\([-\pi,\pi]\)上的函数\(f(x)\),可以展开为*
\(\large f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos nx+b_n\sin nx)\quad n=0,1,2,…\)
则系数为
\(\large a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cdot\cos nx dx\)
\(\large b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cdot\sin nx dx\)
对于周期函数(周期为\(2l\))或定义在\([-l,l]\)上的函数\(f(x)\),
\(\large f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infty}\left(a_n\cos\frac{n\pi}{l}x+b_n\sin\frac{n\pi}{l}x\right)\)
则系数为
\(\large a_n=\frac{1}{l}\int_{-l}^{l}f(x)\cdot\cos\frac{n\pi}{l}xdx\)
\(\large b_n=\frac{1}{l}\int_{-l}^{l}f(x)\cdot\sin\frac{n\pi}{l}xdx\)
对于定义在\([0,l]\)上的函数\(f(x)\),展成Fourier级数,需要用到延拓的概念,此时可以选择奇延拓(展成正弦函数)或偶延拓(展成余弦函数)
奇延拓(展成正弦函数)
\(\large f(x)=\sum\limits_{n=1}^{\infty}b_n\sin\frac{n\pi}{l}x\)
\(\large b_n=\frac{2}{l}\int_{0}^{l}f(x)\cdot\sin\frac{n\pi}{l}xdx\)
偶延拓(展成余弦函数)
\(\large f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\cos\frac{n\pi}{l}x\)
\(\large a_n=\frac{2}{l}\int_{0}^{l}f(x)\cdot\cos\frac{n\pi}{l}xdx\)
* 展开有条件(Dirichlet条件),此处不详细说明。对于一般数学物理方程基本适用。
数理方程:Fourier级数的更多相关文章
- 数理方程:Fourier变换与卷积
更新:1 APR 2016 关于傅里叶级数参看数理方程:Fourier级数 Fourier变换: 对于满足Dirichlet条件的函数\(f(t)\)在其连续点处定义 \(F(\omega)=\int ...
- Fourier分析基础(一)——Fourier级数
前言 傅立叶分析的作用是把一个函数变成一堆三角函数的和的形式,也就是分解.首先引入的是傅立叶级数,Fourier级数的作用是把函数变为可数无限个三角函数的和,而且这些三角函数的频率都是某个基频的整数倍 ...
- Fourier级数
目录 Fourier级数 函数的Fourier级数的展开 Fourier级数习题: Fourier级数 函数的Fourier级数的展开 Euler--Fourier公式 我们探讨这样一个问题: 假设\ ...
- 数理方程:Laplace变换 & 留数(更新中)
更新:25 APR 2016 Laplace变换 设函数\(f(t)\)在\(t>0\)时有定义,积分 \(F(s)=\int_0^{+\infty}f(t)e^{-st}dt \qquad ( ...
- 【转载】Ansys中的阻尼
原文地址:http://www.cnblogs.com/ylhome/archive/2009/08/26/1554195.html ANSYS动力学分析中提供了各种的阻尼形式,这些阻尼在分析中是如何 ...
- 为什么Fourier分析?
本文旨在给出Fourier分析的几个动机. 目录 波动方程 热导方程 Lapalce变换 求和公式 表示论 特征理论 参考资料 波动方程 考虑一维的波动方程最简单的边值问题$$u(x,t), x\in ...
- 信号处理——Hilbert端点效应浅析
作者:桂. 时间:2017-03-05 19:29:12 链接:http://www.cnblogs.com/xingshansi/p/6506405.html 声明:转载请注明出处,谢谢. 前言 ...
- 研究傅里叶变换的一本好书<<快速傅里叶变换及其C程序>>
快速傅里叶变换及其C程序 <快速傅里叶变换及其C程序>是中国科学技术大学出版社出版的.本书系统地介绍了傅里叶变换的理论和技术,内容包括傅里叶变换(FT)的定义.存在条件及其性质,离散傅里叶 ...
- 【转】vc api 录音
一.数字音频基础知识 Fourier级数: 任何周期的波形可以分解成多个正弦波,这些正弦波的频率都是整数倍.级数中其他正线波的频率是基础频率的整数倍.基础频率称为一级谐波. PCM: pulse co ...
随机推荐
- Linux 上的基础网络设备详解
抽象网络设备的原理及使用 网络虚拟化是 Cloud 中的一个重要部分.作为基础知识,本文详细讲述 Linux 抽象出来的各种网络设备的原理.用法.数据流向.您通过此文,能够知道如何使用 Linux 的 ...
- 安装配置tomcat环境
安装配置tomcat环境 #所需要软件包 apache-tomcat-7.0.65.tar.gz jdk-7u80-linux-x64.gz #建立 个专用账户 usradd tomcat ...
- Codeforces Round #188 (Div. 1) B. Ants 暴力
B. Ants Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/317/problem/B Des ...
- hdu1498 50 years, 50 colors --- 最小点覆盖
给一个矩阵,里面有一些不同颜色的气球.每次能够消灭一行或一列中某一种颜色的气球,问你在k次及以内,有哪些颜色的气球是不管怎样也消不完的. 那么思路就是,对每一种颜色的气球求最小点覆盖.>k 则为 ...
- 终端I/O之特殊输入字符
POSIX.1定义了11个在输入时作特殊处理的字符.实现定义了另外一些特殊字符.表18-6摘要列出了这些特殊字符. 表18-6 终端特殊输入字符 在POSIX.1的11个特殊字符中,可将其中9个更改为 ...
- Android 自定义组合控件
1, you need to add this kind of code to the constructors of your custom view which must extend ViewG ...
- c++ 设计模式8 (Factory Method 工厂方法)
5. “对象创建”类模式 通过“对象创建”类模式绕开new,来避免对象创建(new)过程中所导致的紧耦合(依赖具体类),从而支持对象创建的稳定.它是接口抽象之后的第一步工作. 5.1 工厂方法 动机: ...
- AJAX全套
AJAX概述 AJAX即“Asynchronous Javascript And XML”(异步JavaScript和XML),是指一种创建交互式网页应用的网页开发技术. AJAX = 异步 Java ...
- 1.6.9 UIMA Integration
1. UIMA 集成 你可以使用solr集成Apache的非结构化信息管理架构(UIMA).UIMA可以让你定义自己的分析引擎通道,逐步添加元数据到文档的标注. 关于Solr UIMA的更多信息,参考 ...
- TextRank算法提取关键词的Java实现
转载:码农场 » TextRank算法提取关键词的Java实现 谈起自动摘要算法,常见的并且最易实现的当属TF-IDF,但是感觉TF-IDF效果一般,不如TextRank好. TextRank是在 G ...