更新:25 MAR 2016

对于周期函数(周期为\(2\pi\))或定义在\([-\pi,\pi]\)上的函数\(f(x)\),可以展开为*

\(\large f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos nx+b_n\sin nx)\quad n=0,1,2,…\)

则系数为

\(\large a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cdot\cos nx dx\)

\(\large b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cdot\sin nx dx\)

对于周期函数(周期为\(2l\))或定义在\([-l,l]\)上的函数\(f(x)\),

\(\large f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infty}\left(a_n\cos\frac{n\pi}{l}x+b_n\sin\frac{n\pi}{l}x\right)\)

则系数为

\(\large a_n=\frac{1}{l}\int_{-l}^{l}f(x)\cdot\cos\frac{n\pi}{l}xdx\)

\(\large b_n=\frac{1}{l}\int_{-l}^{l}f(x)\cdot\sin\frac{n\pi}{l}xdx\)

对于定义在\([0,l]\)上的函数\(f(x)\),展成Fourier级数,需要用到延拓的概念,此时可以选择奇延拓(展成正弦函数)或偶延拓(展成余弦函数)

奇延拓(展成正弦函数)

\(\large f(x)=\sum\limits_{n=1}^{\infty}b_n\sin\frac{n\pi}{l}x\)

\(\large b_n=\frac{2}{l}\int_{0}^{l}f(x)\cdot\sin\frac{n\pi}{l}xdx\)

偶延拓(展成余弦函数)

\(\large f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\cos\frac{n\pi}{l}x\)

\(\large a_n=\frac{2}{l}\int_{0}^{l}f(x)\cdot\cos\frac{n\pi}{l}xdx\)

* 展开有条件(Dirichlet条件),此处不详细说明。对于一般数学物理方程基本适用。

数理方程:Fourier级数的更多相关文章

  1. 数理方程:Fourier变换与卷积

    更新:1 APR 2016 关于傅里叶级数参看数理方程:Fourier级数 Fourier变换: 对于满足Dirichlet条件的函数\(f(t)\)在其连续点处定义 \(F(\omega)=\int ...

  2. Fourier分析基础(一)——Fourier级数

    前言 傅立叶分析的作用是把一个函数变成一堆三角函数的和的形式,也就是分解.首先引入的是傅立叶级数,Fourier级数的作用是把函数变为可数无限个三角函数的和,而且这些三角函数的频率都是某个基频的整数倍 ...

  3. Fourier级数

    目录 Fourier级数 函数的Fourier级数的展开 Fourier级数习题: Fourier级数 函数的Fourier级数的展开 Euler--Fourier公式 我们探讨这样一个问题: 假设\ ...

  4. 数理方程:Laplace变换 & 留数(更新中)

    更新:25 APR 2016 Laplace变换 设函数\(f(t)\)在\(t>0\)时有定义,积分 \(F(s)=\int_0^{+\infty}f(t)e^{-st}dt \qquad ( ...

  5. 【转载】Ansys中的阻尼

    原文地址:http://www.cnblogs.com/ylhome/archive/2009/08/26/1554195.html ANSYS动力学分析中提供了各种的阻尼形式,这些阻尼在分析中是如何 ...

  6. 为什么Fourier分析?

    本文旨在给出Fourier分析的几个动机. 目录 波动方程 热导方程 Lapalce变换 求和公式 表示论 特征理论 参考资料 波动方程 考虑一维的波动方程最简单的边值问题$$u(x,t), x\in ...

  7. 信号处理——Hilbert端点效应浅析

    作者:桂. 时间:2017-03-05  19:29:12 链接:http://www.cnblogs.com/xingshansi/p/6506405.html 声明:转载请注明出处,谢谢. 前言 ...

  8. 研究傅里叶变换的一本好书<<快速傅里叶变换及其C程序>>

    快速傅里叶变换及其C程序 <快速傅里叶变换及其C程序>是中国科学技术大学出版社出版的.本书系统地介绍了傅里叶变换的理论和技术,内容包括傅里叶变换(FT)的定义.存在条件及其性质,离散傅里叶 ...

  9. 【转】vc api 录音

    一.数字音频基础知识 Fourier级数: 任何周期的波形可以分解成多个正弦波,这些正弦波的频率都是整数倍.级数中其他正线波的频率是基础频率的整数倍.基础频率称为一级谐波. PCM: pulse co ...

随机推荐

  1. Myeclipse如何改变编码方式

    Windows---->Preferences---->myeclipse Enterprise Workbench---->File and Editors----->JSP ...

  2. CentOS6.5下安装MariaDB5.5.36

    yum groupinstall -y "Development Tools" yum install -y cmake openssl-devel zlib-devel yum ...

  3. 会吓人的概念证明病毒: Chameleon

    近期有这么一条新闻指出,有一对家长发现,黑客入侵了他们为10个月女儿所准备的婴儿监视器(baby monitor).该黑客除了远程操控该监视器的录像角度,还大声对着小孩喊叫.婴儿的爸爸冲进女儿房间后, ...

  4. 使用NPOI导出DataTable到Excel

    使用C#对DataTable导出到Excel是我们工作当中比较多用到的场景,微软提供了Microsoft.Office.Interop.Excel组件可以进行操作,但是该组件在数据量大的时候速度很慢, ...

  5. [Angular2 Router] Programmatic Router Navigation via the Router API - Relative And Absolute Router Navigation

    In this tutorial we are going to learn how to navigate programmatically (or imperatively) by using t ...

  6. careercup-高等难度 18.6

    18.6 设计一个算法,给定10亿个数字,找出最小的100万个数字.假定计算机内存足以容纳全部10亿个数字. 解法: 方法1:排序 按升序排序所有的元素,然后取出前100万个数,时间复杂度为O(nlo ...

  7. jquery 验证控件

    最近应公司要求做了一个jquery的示例文件,包括:模态窗口怎么实现:jquery validate下的校验:怎么做图片特效:怎么实现异步操作:实现图片上传剪切效果等很多特效: 这里把jquery校验 ...

  8. fcitx的安装_配置

    sudo apt-get purger ibus 安装Fcitx:sudo apt-get install im-switch fcitx #修改当前用户的默认输入法, 具体看man im-switc ...

  9. git无法连接bitbucket/github时,出现"Permission deied(publickey)"

    Permission denied (publickey). fatal: Could not read from remote repository. Please make sure you ha ...

  10. Linux编程之《只运行一个实例》

    概述 有些时候,我们要求一个程序在系统中只能启动一个实例.比如,Windows自带的播放软件Windows Medea Player在Windows里就只能启动一个实例.原因很简单,如果同时启动几个实 ...