更新:25 MAR 2016

对于周期函数(周期为\(2\pi\))或定义在\([-\pi,\pi]\)上的函数\(f(x)\),可以展开为*

\(\large f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos nx+b_n\sin nx)\quad n=0,1,2,…\)

则系数为

\(\large a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cdot\cos nx dx\)

\(\large b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cdot\sin nx dx\)

对于周期函数(周期为\(2l\))或定义在\([-l,l]\)上的函数\(f(x)\),

\(\large f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infty}\left(a_n\cos\frac{n\pi}{l}x+b_n\sin\frac{n\pi}{l}x\right)\)

则系数为

\(\large a_n=\frac{1}{l}\int_{-l}^{l}f(x)\cdot\cos\frac{n\pi}{l}xdx\)

\(\large b_n=\frac{1}{l}\int_{-l}^{l}f(x)\cdot\sin\frac{n\pi}{l}xdx\)

对于定义在\([0,l]\)上的函数\(f(x)\),展成Fourier级数,需要用到延拓的概念,此时可以选择奇延拓(展成正弦函数)或偶延拓(展成余弦函数)

奇延拓(展成正弦函数)

\(\large f(x)=\sum\limits_{n=1}^{\infty}b_n\sin\frac{n\pi}{l}x\)

\(\large b_n=\frac{2}{l}\int_{0}^{l}f(x)\cdot\sin\frac{n\pi}{l}xdx\)

偶延拓(展成余弦函数)

\(\large f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\cos\frac{n\pi}{l}x\)

\(\large a_n=\frac{2}{l}\int_{0}^{l}f(x)\cdot\cos\frac{n\pi}{l}xdx\)

* 展开有条件(Dirichlet条件),此处不详细说明。对于一般数学物理方程基本适用。

数理方程:Fourier级数的更多相关文章

  1. 数理方程:Fourier变换与卷积

    更新:1 APR 2016 关于傅里叶级数参看数理方程:Fourier级数 Fourier变换: 对于满足Dirichlet条件的函数\(f(t)\)在其连续点处定义 \(F(\omega)=\int ...

  2. Fourier分析基础(一)——Fourier级数

    前言 傅立叶分析的作用是把一个函数变成一堆三角函数的和的形式,也就是分解.首先引入的是傅立叶级数,Fourier级数的作用是把函数变为可数无限个三角函数的和,而且这些三角函数的频率都是某个基频的整数倍 ...

  3. Fourier级数

    目录 Fourier级数 函数的Fourier级数的展开 Fourier级数习题: Fourier级数 函数的Fourier级数的展开 Euler--Fourier公式 我们探讨这样一个问题: 假设\ ...

  4. 数理方程:Laplace变换 & 留数(更新中)

    更新:25 APR 2016 Laplace变换 设函数\(f(t)\)在\(t>0\)时有定义,积分 \(F(s)=\int_0^{+\infty}f(t)e^{-st}dt \qquad ( ...

  5. 【转载】Ansys中的阻尼

    原文地址:http://www.cnblogs.com/ylhome/archive/2009/08/26/1554195.html ANSYS动力学分析中提供了各种的阻尼形式,这些阻尼在分析中是如何 ...

  6. 为什么Fourier分析?

    本文旨在给出Fourier分析的几个动机. 目录 波动方程 热导方程 Lapalce变换 求和公式 表示论 特征理论 参考资料 波动方程 考虑一维的波动方程最简单的边值问题$$u(x,t), x\in ...

  7. 信号处理——Hilbert端点效应浅析

    作者:桂. 时间:2017-03-05  19:29:12 链接:http://www.cnblogs.com/xingshansi/p/6506405.html 声明:转载请注明出处,谢谢. 前言 ...

  8. 研究傅里叶变换的一本好书<<快速傅里叶变换及其C程序>>

    快速傅里叶变换及其C程序 <快速傅里叶变换及其C程序>是中国科学技术大学出版社出版的.本书系统地介绍了傅里叶变换的理论和技术,内容包括傅里叶变换(FT)的定义.存在条件及其性质,离散傅里叶 ...

  9. 【转】vc api 录音

    一.数字音频基础知识 Fourier级数: 任何周期的波形可以分解成多个正弦波,这些正弦波的频率都是整数倍.级数中其他正线波的频率是基础频率的整数倍.基础频率称为一级谐波. PCM: pulse co ...

随机推荐

  1. Linux 上的基础网络设备详解

    抽象网络设备的原理及使用 网络虚拟化是 Cloud 中的一个重要部分.作为基础知识,本文详细讲述 Linux 抽象出来的各种网络设备的原理.用法.数据流向.您通过此文,能够知道如何使用 Linux 的 ...

  2. 安装配置tomcat环境

    安装配置tomcat环境 #所需要软件包 apache-tomcat-7.0.65.tar.gz    jdk-7u80-linux-x64.gz    #建立 个专用账户 usradd tomcat ...

  3. Codeforces Round #188 (Div. 1) B. Ants 暴力

    B. Ants Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/317/problem/B Des ...

  4. hdu1498 50 years, 50 colors --- 最小点覆盖

    给一个矩阵,里面有一些不同颜色的气球.每次能够消灭一行或一列中某一种颜色的气球,问你在k次及以内,有哪些颜色的气球是不管怎样也消不完的. 那么思路就是,对每一种颜色的气球求最小点覆盖.>k 则为 ...

  5. 终端I/O之特殊输入字符

    POSIX.1定义了11个在输入时作特殊处理的字符.实现定义了另外一些特殊字符.表18-6摘要列出了这些特殊字符. 表18-6 终端特殊输入字符 在POSIX.1的11个特殊字符中,可将其中9个更改为 ...

  6. Android 自定义组合控件

    1, you need to add this kind of code to the constructors of your custom view which must extend ViewG ...

  7. c++ 设计模式8 (Factory Method 工厂方法)

    5. “对象创建”类模式 通过“对象创建”类模式绕开new,来避免对象创建(new)过程中所导致的紧耦合(依赖具体类),从而支持对象创建的稳定.它是接口抽象之后的第一步工作. 5.1 工厂方法 动机: ...

  8. AJAX全套

    AJAX概述 AJAX即“Asynchronous Javascript And XML”(异步JavaScript和XML),是指一种创建交互式网页应用的网页开发技术. AJAX = 异步 Java ...

  9. 1.6.9 UIMA Integration

    1. UIMA 集成 你可以使用solr集成Apache的非结构化信息管理架构(UIMA).UIMA可以让你定义自己的分析引擎通道,逐步添加元数据到文档的标注. 关于Solr UIMA的更多信息,参考 ...

  10. TextRank算法提取关键词的Java实现

    转载:码农场 » TextRank算法提取关键词的Java实现 谈起自动摘要算法,常见的并且最易实现的当属TF-IDF,但是感觉TF-IDF效果一般,不如TextRank好. TextRank是在 G ...