搜了题解才把题搞明白。明白之后发现其实题意很清晰,解题思路也很清晰,只是题目表述的很不清晰……

大意如下——

给你一个无向图,图中任意两点的距离是两点间所有路径上的某一条边,这条边需要满足两个条件:1. 这条边这两点间某条路径上的最长边;2. 这条边是这两点间所有路径上的最长边中的最短边。

简单来说,假如a到d有两条路径,一条经过b,一条经过d,其中ab = 1, bd = 3, ac = 2, cd = 2,那么abd上的最长边为3,acd上的最长边为2,则ad的距离为2。

如果a, d两点间的距离小于能量L,那么就可以在a, d两点间建立一个传送门。

现在,求在L的能量下最多可以在这个图中建立多少个传送门。

输入:

多组输入数据。

每组输入数据第一行包括三个整数n, m, q。表示节点数,边数,请求数。

接下来m行,每行三个整数u, v, val,表示边的源点,目的点,边权(注意,是无向图,源点和目的点等价)。

接下来q行,每行一个整数L,表示请求所提供的能量。

解题核心:如果集合x与集合y不连通,而此时有一条路L'将x与y连通,且L' <= L,此时将可以建立新传送门num[x]*num[y]个,num[x]表示x集合中的节点数。L1连通后,将集合x与集合y合并,得到新集合x,num[x] += num[y],这就是并查集。

可以使用并查集+kruskal进行求解。即,将所有边从小到大排序,每次按顺序向并查集中增加新边,需要保证添加的新边不会构成环,直到边长>请求所提供的能量L。

新问题出现了,当我们在L1的能量下将路径求出来了,那么如果下一次请求能量为L2,那么我们无法在已有的并查集上继续求解,只能重新建立并查集,这将产生极大的浪费。所以,我们需要将请求L1——Lq全部记录下来,即离线操作,然后按照从小到大的顺序进行求解。最后在将解按照请求顺序排序输出。

上代码——

 #include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; const int M = ; struct Que //保存查询
{
int q, id, ans; //分别是查询值,查询顺序,输出结果
}que[M]; struct Edge //保存边
{
int u, v, val;
}edge[*M]; int fm[M]; //并查集使用
int sum[M]; //记录各区间节点数 int n, m, q; bool cmp(Edge x, Edge y)
{
return x.val <= y.val;
} bool cmp1(Que x, Que y)
{
return x.q <= y.q;
} bool cmp2(Que x, Que y)
{
return x.id < y.id;
} void init()
{
for(int i = ; i <= n; i++)
{
fm[i] = i;
sum[i] = ;
}
for(int i = ; i < m; i++) scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].val);
sort(edge, edge+m, cmp); //按路径长度从小到大排序 for(int i = ; i < q; i++)
{
scanf("%d", &que[i].q);
que[i].id = i;
que[i].ans = ;
}
sort(que, que+q, cmp1); //按请求长度从小到大排序
} int mfind(int x) //查询操作,含路径压缩
{
int fx = x;
while(fx != fm[fx]) fx = fm[fx];
while(x != fm[x])
{
int mid = fm[x];
fm[x] = fx;
x = mid;
}
return fx;
} void work()
{
int cnt = ;
for(int i = ; i < q; i++) //回应请求
{
while(que[i].q >= edge[cnt].val && cnt < m) //kruskal算法
{
int fx = mfind(edge[cnt].u);
int fy = mfind(edge[cnt].v);
if(fx != fy)
{
que[i].ans += sum[fx]*sum[fy]; //新增传送阵
fm[fy] = fx; //集合合并
sum[fx] += sum[fy];
}
cnt++;
}
if(i > ) que[i].ans += que[i-].ans; //包含已有传送阵
}
} void output()
{
sort(que, que+q, cmp2); //按请求顺序排序
for(int i = ; i < q; i++) printf("%d\n", que[i].ans);
} int main()
{
//freopen("test.txt", "r", stdin);
while(~scanf("%d%d%d", &n, &m, &q))
{
init();
work();
output();
}
return ;
}

hdu 3938 Portal(并查集+离线+kruskal)2011 Multi-University Training Contest 10的更多相关文章

  1. HDU 3938 Portal (离线并查集,此题思路很强!!!,得到所谓的距离很巧妙)

    Portal Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  2. ACM: hdu 1811 Rank of Tetris - 拓扑排序-并查集-离线

    hdu 1811 Rank of Tetris Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  3. BZOJ5188: [Usaco2018 Jan]MooTube 并查集+离线处理

    BZOJ又不给题面... Luogu的翻译看不下去... 题意简述 有一个$n$个节点的树,边有权值,定义两个节点之间的距离为两点之间的路径上的最小边权 给你$Q$个询问,问你与点$v$的距离超过$k ...

  4. poj 2528 Mayor's posters 线段树 || 并查集 离线处理

    题目链接 题意 用不同颜色的线段覆盖数轴,问最终数轴上有多少种颜色? 注:只有最上面的线段能够被看到:即,如果有一条线段被其他的线段给完全覆盖住,则这个颜色是看不到的. 法一:线段树 按题意按顺序模拟 ...

  5. ACM学习历程—SNNUOJ 1110 传输网络((并查集 && 离线) || (线段树 && 时间戳))(2015陕西省大学生程序设计竞赛D题)

    Description Byteland国家的网络单向传输系统可以被看成是以首都 Bytetown为中心的有向树,一开始只有Bytetown建有基站,所有其他城市的信号都是从Bytetown传输过来的 ...

  6. HDU 3938:Portal(并查集+离线处理)

    http://acm.hdu.edu.cn/showproblem.php?pid=3938 Portal Problem Description   ZLGG found a magic theor ...

  7. zoj3261 并查集离线处理

    Connections in Galaxy War Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & ...

  8. HDU 2818 (矢量并查集)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2818 题目大意:每次指定一块砖头,移动砖头所在堆到另一堆.查询指定砖头下面有几块砖头. 解题思路: ...

  9. BZOJ-1015 StarWar星球大战 并查集+离线处理

    1015: [JSOI2008]星球大战starwar Time Limit: 3 Sec Memory Limit: 162 MB Submit: 4105 Solved: 1826 [Submit ...

随机推荐

  1. ZOJ 3778 Talented Chef(找规律,模拟计算,11届ACM省赛,简单)

    题目链接 2014年浙江省赛C题,当时觉得难,现在想想这题真水.. 找规律: 若   最大的那个步骤数*m-总和>=0,那么答案就是 最大的那个步骤数 . 否则  就要另加上不够的数量,具体看代 ...

  2. UVA 11174 Stand in a Line (组合+除法的求模)

    题意:村子里有n个人,给出父亲和儿子的关系,有多少种方式可以把他们排成一列,使得没人会排在他父亲的前面 思路:设f[i]表示以i为根的子树有f[i]种排法,节点i的各个子树的根节点,即它的儿子为c1, ...

  3. javascript中创建插入元素

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  4. linux下获取时间差

    #include <sys/time.h> struct timeval tpstart,tpend;     float timeuse;     gettimeofday(&t ...

  5. java基础知识回顾之---java String final类 容易混淆的java String常量池内存分析

    /** *   栈(Stack) :存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放  在常量池中). 堆(heap):存 ...

  6. 英特尔Intel

    公司名称 英特尔(集成电路公司)Intel Corporation(Integrated Electronics Corporation) 英特尔公司是全球最大的半导体芯片制造商,它成立于1968年, ...

  7. java:类集框架

    类集框架:jdk提供的一系列类和接口,位于java.util包当中,主要用于存储和管理对象,主要分为三大类:集合.列表和映射. 集合Set:用于存储一系列对象的集合.无序.不允许重复元素. 列表Lis ...

  8. 在浏览器控制台输出内容 console.log(string);

    在浏览器控制台中写如数据 1添加    <script type="text/javascript">djConfig = { isDebug: true };< ...

  9. Java IDE 编辑器 --- IntelliJ IDEA 进阶篇 生成 hibernate 实体与映射文件

    原文:转:Java IDE 编辑器 --- IntelliJ IDEA 进阶篇 生成 hibernate 实体与映射文件 2011-04-30 12:50 很多人不知道怎么用 IntelliJ IDE ...

  10. C++:基类和派生类

    4.1 派生类的声明 继承实例如下: class Person{ //声明基类Person public: void print() { cout<<"name:"&l ...