搜了题解才把题搞明白。明白之后发现其实题意很清晰,解题思路也很清晰,只是题目表述的很不清晰……

大意如下——

给你一个无向图,图中任意两点的距离是两点间所有路径上的某一条边,这条边需要满足两个条件:1. 这条边这两点间某条路径上的最长边;2. 这条边是这两点间所有路径上的最长边中的最短边。

简单来说,假如a到d有两条路径,一条经过b,一条经过d,其中ab = 1, bd = 3, ac = 2, cd = 2,那么abd上的最长边为3,acd上的最长边为2,则ad的距离为2。

如果a, d两点间的距离小于能量L,那么就可以在a, d两点间建立一个传送门。

现在,求在L的能量下最多可以在这个图中建立多少个传送门。

输入:

多组输入数据。

每组输入数据第一行包括三个整数n, m, q。表示节点数,边数,请求数。

接下来m行,每行三个整数u, v, val,表示边的源点,目的点,边权(注意,是无向图,源点和目的点等价)。

接下来q行,每行一个整数L,表示请求所提供的能量。

解题核心:如果集合x与集合y不连通,而此时有一条路L'将x与y连通,且L' <= L,此时将可以建立新传送门num[x]*num[y]个,num[x]表示x集合中的节点数。L1连通后,将集合x与集合y合并,得到新集合x,num[x] += num[y],这就是并查集。

可以使用并查集+kruskal进行求解。即,将所有边从小到大排序,每次按顺序向并查集中增加新边,需要保证添加的新边不会构成环,直到边长>请求所提供的能量L。

新问题出现了,当我们在L1的能量下将路径求出来了,那么如果下一次请求能量为L2,那么我们无法在已有的并查集上继续求解,只能重新建立并查集,这将产生极大的浪费。所以,我们需要将请求L1——Lq全部记录下来,即离线操作,然后按照从小到大的顺序进行求解。最后在将解按照请求顺序排序输出。

上代码——

 #include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; const int M = ; struct Que //保存查询
{
int q, id, ans; //分别是查询值,查询顺序,输出结果
}que[M]; struct Edge //保存边
{
int u, v, val;
}edge[*M]; int fm[M]; //并查集使用
int sum[M]; //记录各区间节点数 int n, m, q; bool cmp(Edge x, Edge y)
{
return x.val <= y.val;
} bool cmp1(Que x, Que y)
{
return x.q <= y.q;
} bool cmp2(Que x, Que y)
{
return x.id < y.id;
} void init()
{
for(int i = ; i <= n; i++)
{
fm[i] = i;
sum[i] = ;
}
for(int i = ; i < m; i++) scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].val);
sort(edge, edge+m, cmp); //按路径长度从小到大排序 for(int i = ; i < q; i++)
{
scanf("%d", &que[i].q);
que[i].id = i;
que[i].ans = ;
}
sort(que, que+q, cmp1); //按请求长度从小到大排序
} int mfind(int x) //查询操作,含路径压缩
{
int fx = x;
while(fx != fm[fx]) fx = fm[fx];
while(x != fm[x])
{
int mid = fm[x];
fm[x] = fx;
x = mid;
}
return fx;
} void work()
{
int cnt = ;
for(int i = ; i < q; i++) //回应请求
{
while(que[i].q >= edge[cnt].val && cnt < m) //kruskal算法
{
int fx = mfind(edge[cnt].u);
int fy = mfind(edge[cnt].v);
if(fx != fy)
{
que[i].ans += sum[fx]*sum[fy]; //新增传送阵
fm[fy] = fx; //集合合并
sum[fx] += sum[fy];
}
cnt++;
}
if(i > ) que[i].ans += que[i-].ans; //包含已有传送阵
}
} void output()
{
sort(que, que+q, cmp2); //按请求顺序排序
for(int i = ; i < q; i++) printf("%d\n", que[i].ans);
} int main()
{
//freopen("test.txt", "r", stdin);
while(~scanf("%d%d%d", &n, &m, &q))
{
init();
work();
output();
}
return ;
}

hdu 3938 Portal(并查集+离线+kruskal)2011 Multi-University Training Contest 10的更多相关文章

  1. HDU 3938 Portal (离线并查集,此题思路很强!!!,得到所谓的距离很巧妙)

    Portal Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  2. ACM: hdu 1811 Rank of Tetris - 拓扑排序-并查集-离线

    hdu 1811 Rank of Tetris Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  3. BZOJ5188: [Usaco2018 Jan]MooTube 并查集+离线处理

    BZOJ又不给题面... Luogu的翻译看不下去... 题意简述 有一个$n$个节点的树,边有权值,定义两个节点之间的距离为两点之间的路径上的最小边权 给你$Q$个询问,问你与点$v$的距离超过$k ...

  4. poj 2528 Mayor's posters 线段树 || 并查集 离线处理

    题目链接 题意 用不同颜色的线段覆盖数轴,问最终数轴上有多少种颜色? 注:只有最上面的线段能够被看到:即,如果有一条线段被其他的线段给完全覆盖住,则这个颜色是看不到的. 法一:线段树 按题意按顺序模拟 ...

  5. ACM学习历程—SNNUOJ 1110 传输网络((并查集 && 离线) || (线段树 && 时间戳))(2015陕西省大学生程序设计竞赛D题)

    Description Byteland国家的网络单向传输系统可以被看成是以首都 Bytetown为中心的有向树,一开始只有Bytetown建有基站,所有其他城市的信号都是从Bytetown传输过来的 ...

  6. HDU 3938:Portal(并查集+离线处理)

    http://acm.hdu.edu.cn/showproblem.php?pid=3938 Portal Problem Description   ZLGG found a magic theor ...

  7. zoj3261 并查集离线处理

    Connections in Galaxy War Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & ...

  8. HDU 2818 (矢量并查集)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2818 题目大意:每次指定一块砖头,移动砖头所在堆到另一堆.查询指定砖头下面有几块砖头. 解题思路: ...

  9. BZOJ-1015 StarWar星球大战 并查集+离线处理

    1015: [JSOI2008]星球大战starwar Time Limit: 3 Sec Memory Limit: 162 MB Submit: 4105 Solved: 1826 [Submit ...

随机推荐

  1. C/C++框架和库

    http://blog.csdn.net/xiaoxiaoyeyaya/article/details/42541419 值得学习的C语言开源项目 - 1. Webbench Webbench是一个在 ...

  2. Url重写和伪静态

    这里是URL重写的精华:http://msdn.microsoft.com/zh-cn/library/ms972974.aspx感觉写的非常棒. 其实URL重写操作起来也是挺简单的,只要你在前台写好 ...

  3. java基础知识回顾之java Thread类学习(五)--java多线程安全问题(锁)同步的前提

    这里举个例子讲解,同步synchronized在什么地方加,以及同步的前提: * 1.必须要有两个以上的线程,才需要同步. * 2.必须是多个线程使用同一个锁. * 3.必须保证同步中只能有一个线程在 ...

  4. Perl 三种时间time,localtime,gmttime

    #!/usr/bin/perl use warnings; use diagnostics; use strict; use POSIX; print "time: ", time ...

  5. 移植 FFMPEG-2.2.4 -(编译)

    源码下载:http://www.ffmpeg.org/download.html编译安装: http://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu su ...

  6. 利用python 获取 windows 组策略

    工作中有时候会有这种需求: 1. 自动配置组策略的安全基线,这个东西不用你自己写了,微软有这个工具,Microsoft Security Compliance Manager,你可以在下面的地址去下载 ...

  7. Android:Logcat中找不到本应该输出的Log调试信息

    1.有没有设置Logcat的filter, 2.如果选中了自定义的filter,Tag是否和程序中想查看的那条输出信息的Tag相同: 3.Level等级是否设置的太高. filter设置 点击loca ...

  8. 使用List,Dictionary加载数据库中的数据

    情景描述:数据库中有一张设备表,字段DWDM存放的是各个厂编号,字段ZNBH存放的是设备编号.其中DWDM跟ZNBH是一对多的关系.需要将数据库中的值加载到List<Dictionary< ...

  9. Spring AOP: Spring之面向方面编程

    Spring AOP: Spring之面向方面编程 面向方面编程 (AOP) 提供从另一个角度来考虑程序结构以完善面向对象编程(OOP). 面向对象将应用程序分解成 各个层次的对象,而AOP将程序分解 ...

  10. 关于spring-mvc的InitBinder注解的参数

    关于spring-mvc的InitBinder注解的参数 通过Spring-mvc的@InitBinder注释的方法可以对WebDataBinder做一些初始化操作.比如设置Validator. 我一 ...