题目链接:http://poj.org/problem?

id=3169

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they
can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 



Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other
and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 



Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD. 



Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 



Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample: 



There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. 



The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

题意:

给出N头牛,他们是依照顺序编号站在一条直线上的,同意有多头牛在同一个位置!

给出ML对牛,他们同意之间的距离小于等于W

给出MD对牛,他们之间的距离必须是大于等于W的

给出ML+MD的约束条件,求1号牛到N号的最大距离dis[N]。

假设dis[N] = INF,则输出-2。

假设他们之间不存在满足要求的方案,输出-1

其余输出dis[N];

PS:http://blog.csdn.net/zhang20072844/article/details/7788672

代码例如以下:

#include <cstdio>
#include <cstring>
#include <stack>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define N 20000
#define M 20000
int n, m, k;
int Edgehead[N], dis[N];
struct Edge
{
int v,w,next;
} Edge[2*M];
bool vis[N];
int cont[N];
void Addedge(int u, int v, int w)
{
Edge[k].next = Edgehead[u];
Edge[k].w = w;
Edge[k].v = v;
Edgehead[u] = k++;
}
int SPFA( int start)//stack
{
int sta[N];
memset(cont,0,sizeof(cont);
int top = 0;
for(int i = 1 ; i <= n ; i++ )
dis[i] = INF;
dis[start] = 0;
++cont[start];
memset(vis,false,sizeof(vis));
sta[++top] = start;
vis[start] = true;
while(top)
{
int u = sta[top--];
vis[u] = false;
for(int i = Edgehead[u]; i != -1; i = Edge[i].next)//注意
{
int v = Edge[i].v;
int w = Edge[i].w;
if(dis[v] > dis[u] + w)
{
dis[v] = dis[u]+w;
if( !vis[v] )//防止出现环
{
sta[++top] = v;
vis[v] = true;
}
if(++cont[v] > n)//有负环
return -1;
}
}
}
return dis[n];
}
int main()
{
int u, v, w;
int c;
int ml, md;
while(~scanf("%d%d%d",&n,&ml,&md))//n为目的地
{
k = 1;
memset(Edgehead,-1,sizeof(Edgehead));
for(int i = 1 ; i <= ml; i++ )
{
scanf("%d%d%d",&u,&v,&w);
Addedge(u,v,w);
}
for(int i = 1 ; i <= md; i++ )
{
scanf("%d%d%d",&u,&v,&w);
Addedge(v,u,-w);
}
for(int i = 1; i < n; i++)
{
Addedge(i+1,i,0);
}
int ans = SPFA(1);//从点1開始寻找最短路
if(ans == INF)
{
printf("-2\n");
}
else
{
printf("%d\n",ans);
}
}
return 0;
}

POJ 3169 Layout(差分约束啊)的更多相关文章

  1. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  2. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  3. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  4. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  5. ShortestPath:Layout(POJ 3169)(差分约束的应用)

                布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...

  6. poj 3169&hdu3592(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9687   Accepted: 4647 Descriptio ...

  7. Bellman-Ford算法:POJ No.3169 Layout 差分约束

    #define _CRT_SECURE_NO_WARNINGS /* 4 2 1 1 3 10 2 4 20 2 3 3 */ #include <iostream> #include & ...

  8. POJ 3169 Layout 差分约束系统

    介绍下差分约束系统:就是多个2未知数不等式形如(a-b<=k)的形式 问你有没有解,或者求两个未知数的最大差或者最小差 转化为最短路(或最长路) 1:求最小差的时候,不等式转化为b-a>= ...

  9. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

随机推荐

  1. Eclipse “Invalid Project Description” when creating new project from existing source

    1) File>Import>General>Existing Project into Workspace2) File>Import>Android>Exist ...

  2. Delphi 使用串口模拟工具进行串口程序开发调试

      版权声明:本文为博主原创文章,如需转载请注明出处及作者. 本文由小李专栏原创,转载需注明出处:[http://blog.csdn.net/softwave/article/details/8907 ...

  3. 在word中显示漂亮的代码

    在word中粘贴或写代码时,通常得不到想要的格式,可用‘Notepad++’工具实现. 步骤: (1)安装Notepad++软件,把代码粘贴进去,选择菜单栏中的语言,然后选择相应代码语言,如P-> ...

  4. Multiple View Geometry in Computer Vision Second Edition by Richard Hartley 读书笔记(一)

    var bdots = "../" var sequence = [ 'l1', 'l2', 'l3', 'l4' ]; Chapter1是个总览,引出了射影几何的概念,通过在欧式 ...

  5. opencv行人检测里遇到的setSVMDetector()问题

    参考了博客http://blog.csdn.net/carson2005/article/details/7841443 后,自己动手后发现了一些问题,博客里提到的一些问题没有解决 ,是关于为什么图像 ...

  6. A题进行时--浙大PAT 1011-1020

    #include<stdio.h> #include<string.h> int main(){ ]; ]; ]; ]; ]; int i; float sum; memset ...

  7. svn跳过某个目录

    svn up --set-depth exclude dir2 http://stackoverflow.com/questions/1439176/svn-can-you-remove-direct ...

  8. xmpp 协议之可扩展消息(messaging)与状态(presence)协议核心: RFC 3920

    附:asmack已经不需要了,4.1以后的smack已经可以在android上使用了. XMPP Clients:   http://xmpp.org/software/clients.html An ...

  9. 集群——LVS理论(转)

    原文:http://caduke.blog.51cto.com/3365689/1544229 当单个服务器性能 不能满足日益增多访问流量时,服务器的扩展策略: Scale Up :向上扩展,提升单个 ...

  10. ubuntu下允许root用户ssh远程登录

    原文:http://blog.sina.com.cn/s/blog_7e64a87b0100rn8w.html SSH服务器,可以通过SSH协议登录远程服务器,但是ubuntu默认是启用了root用户 ...