HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂
MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i ) ( i>=3)
mod 1000000007
是质数 , 依据费马小定理 a^phi( p ) = 1 ( mod p ) 这里 p 为质数 且 a 比 p小 所以 a^( p - 1 ) = 1 ( mod p )
所以对非常大的指数能够化简 a ^ k % p == a ^ ( k %(p-1) ) % p
用矩阵高速幂求fib数后代入就可以
M斐波那契数列
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1672 Accepted Submission(s): 482
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
如今给出a, b, n,你能求出F[n]的值吗?
每组数据占一行,包括3个整数a, b, n( 0 <= a, b, n <= 10^9 )
0 1 0
6 10 2
0
60
/* ***********************************************
Author :CKboss
Created Time :2015年03月12日 星期四 22时44分35秒
File Name :HDOJ4549.cpp
************************************************ */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map> using namespace std; typedef long long int LL; const LL mod=1000000007LL;
const LL md=1000000006LL; /// getfib
LL a,b,n; struct Matrix
{
Matrix(LL a=0,LL b=0,LL c=0,LL d=0)
{
m[0][0]=a; m[0][1]=b;
m[1][0]=c; m[1][1]=d;
}
LL m[2][2];
}; Matrix MUI(Matrix& a,Matrix& b)
{
Matrix ret;
ret.m[0][0]=((a.m[0][0]*b.m[0][0])%md+(a.m[0][1]*b.m[1][0])%md)%md;
ret.m[0][1]=((a.m[0][0]*b.m[0][1])%md+(a.m[0][1]*b.m[1][1])%md)%md;
ret.m[1][0]=((a.m[1][0]*b.m[0][0])%md+(a.m[1][1]*b.m[1][0])%md)%md;
ret.m[1][1]=((a.m[1][0]*b.m[0][1])%md+(a.m[1][1]*b.m[1][1])%md)%md;
return ret;
} Matrix QUICKPOW(LL m)
{
Matrix E(1,0,0,1);
Matrix A(1,1,1,0);
while(m)
{
if(m&1LL) E=MUI(E,A);
A=MUI(A,A);
m/=2LL;
}
return E;
} void showMat(Matrix M)
{
cout<<endl;
for(int i=0;i<2;i++)
{
for(int j=0;j<2;j++)
cout<<M.m[i][j]<<",";
cout<<endl;
}
cout<<endl;
} /// get p_th fib number
LL getfib(LL p)
{
p--;
Matrix M1=QUICKPOW(p);
return M1.m[0][0];
} LL QUICKPOW2(LL a,LL x)
{
LL e=1LL;
while(x)
{
if(x&1LL) e=(e*a)%mod;
a=(a*a)%mod;
x/=2LL;
}
return e;
} LL solve()
{
if(n==0) return a;
else if(n==1) return b;
else if(n==2) return (a*b)%mod; ///a的fib系数 -> fib(n-1)
LL xa = getfib(n-1);
LL partA = QUICKPOW2(a,xa); ///b的fib系数 -> fib(i)
LL xb = getfib(n);
LL partB = QUICKPOW2(b,xb); return (partA*partB)%mod;
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout); while(cin>>a>>b>>n)
cout<<solve()<<endl; return 0;
}
HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂的更多相关文章
- HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Li ...
- HDU----(4549)M斐波那契数列(小费马引理+快速矩阵幂)
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 【费马小定理+矩阵快速幂】HDU4549——M斐波那契数列
[题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,求出F[ ...
- HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)
M斐波那契数列 Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Statu ...
- HDU 1005 Number Sequence【斐波那契数列/循环节找规律/矩阵快速幂/求(A * f(n - 1) + B * f(n - 2)) mod 7】
Number Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- HDOJ 5667 Sequence//费马小定理 矩阵快速幂
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意:如题给了一个函数式,给你a,b,c,n,p的值,叫你求f(n)%p的值 思路:先对函数取以a为 ...
- bzoj5118: Fib数列2(费马小定理+矩阵快速幂)
题目大意:求$fib(2^n)$ 就是求fib矩阵的(2^n)次方%p,p是质数,根据费马小定理有 注意因为模数比较大会爆LL,得写快速乘法... #include<bits/stdc++.h& ...
- HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submi ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
随机推荐
- Yii2系列教程六:集成编辑器
上一篇文章我们实现了简单的用户权限管理,至于更先进的RBAC,我后面会单独出一篇文章来说说.在这一篇文章当中,我主要想写的是在Yii2中集成一个编辑器,因为在我们的实际开发当中,一个简单的textar ...
- phpunit与xdebug的使用
基本说明: 1.xdebug是程序猿在调试程序过程中使用的bug调试暴露工具 windows下安装: 1)下载php对应的dll文件,下载地址:https://xdebug.org/download. ...
- non-compatible bean definition of same name and class
在整合struts2.1.6+spring2.5.6开发中,使用了注解和struts-convention来实现零配置管理.spring也使用注解annotation方式.现在的问题是:我在连个个不同 ...
- 作为Java程序员应该掌握的10项技能
本文详细罗列了作为Java程序员应该掌握的10项技能.分享给大家供大家参考.具体如下: 1.语法:必须比较熟悉,在写代码的时候IDE的编辑器对某一行报错应该能够根据报错信息知道是什么样的语法错误并且知 ...
- Docker默认存储路径修改
Docker默认存储路径: # docker info...... Data loop file: /var/lib/docker/devicemapper/devicemapper/data.... ...
- 学习ajax总结
之前公司的ajax学习分享,做一点总结,加深记忆 什么是ajax? 异步的的js和xml,用js异步形式操作xml,工作主要是数据交互 借阅用户操作时间,减少数据请求,可以无刷新请求数据 创建一个对象 ...
- 【Python3 爬虫】14_爬取淘宝上的手机图片
现在我们想要使用爬虫爬取淘宝上的手机图片,那么该如何爬取呢?该做些什么准备工作呢? 首先,我们需要分析网页,先看看网页有哪些规律 打开淘宝网站http://www.taobao.com/ 我们可以看到 ...
- 远程调用——hessian使用入门
Hessian是一个轻量级的remoting onhttp工具,使用简单的方法提供了RMI的功能. 相比WebService,Hessian更简单.快捷.采用的是二进制RPC协议,因为采用的是二进制协 ...
- margin: 0px auto; center 行类 块级
<html> <head> <title> biaoti </title> </head> <body style="bor ...
- C语言学习笔记(三) 输入输出函数的基本用法以及运算符
printf() ——将内容输出到显示器上 四种用法 1.printf("字符串"); 直接输出字符串 2.printf("输出控制符",输出参数); 3. ...