Light OJ 1074:Extended Traffic(spfa判负环)
Extended Traffic
题目链接:https://vjudge.net/problem/LightOJ-1074
Description:
Dhaka city is getting crowded and noisy day by day. Certain roads always remain blocked in congestion. In order to convince people avoid shortest routes, and hence the crowded roads, to reach destination, the city authority has made a new plan. Each junction of the city is marked with a positive integer (≤ 20) denoting the busyness of the junction. Whenever someone goes from one junction (the source junction) to another (the destination junction), the city authority gets the amount (busyness of destination - busyness of source)3 (that means the cube of the difference) from the traveler. The authority has appointed you to find out the minimum total amount that can be earned when someone intelligent goes from a certain junction (the zero point) to several others.
Input:
Input starts with an integer T (≤ 50), denoting the number of test cases.
Each case contains a blank line and an integer n (1 < n ≤ 200) denoting the number of junctions. The next line contains n integers denoting the busyness of the junctions from 1 to n respectively. The next line contains an integer m, the number of roads in the city. Each of the next m lines (one for each road) contains two junction-numbers (source, destination) that the corresponding road connects (all roads are unidirectional). The next line contains the integer q, the number of queries. The next q lines each contain a destination junction-number. There can be at most one direct road from a junction to another junction.
Output:
For each case, print the case number in a single line. Then print q lines, one for each query, each containing the minimum total earning when one travels from junction 1 (the zero point) to the given junction. However, for the queries that gives total earning less than 3, or if the destination is not reachable from the zero point, then print a '?'.
Sample Input:
2
5
6 7 8 9 10
6
1 2
2 3
3 4
1 5
5 4
4 5
2
4
5
2
10 10
1
1 2
1
2
Sample Output:
Case 1:
3
4
Case 2:
?
题意:
给出一个有向图,假设一条边为u->v,其边权为(v-u)^3,最后有多个询问,问从1出发,到达询问目的地的花费最小为多少。当花费小于3时,输出“?”。
题解:
建图很简单,直接三方建就是了。然后从一号点跑最短路,注意用spfa判下负环,负环能够到达的点也是“?”。
代码如下:
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = ;
int d[N],vis[N],c[N],a[N],check[N],fa[N],head[N];
int t,n,m,S;
int qp(int x){
return x*x*x;
}
struct Edge{
int u,v,w,next;
}e[N*N<<];
int tot;
void adde(int u,int v,int w){
e[tot].u=u;e[tot].v=v;e[tot].w=w;e[tot].next=head[u];head[u]=tot++;
}
int spfa(int s){
queue <int> q;
memset(d,INF,sizeof(d));memset(fa,-,sizeof(fa));
memset(vis,,sizeof(vis));memset(c,,sizeof(c));
q.push(s);vis[s]=;d[s]=;c[s]=;
while(!q.empty()){
int u=q.front();q.pop();vis[u]=;
if(c[u]>n){
S=u;
return -;
}
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(d[v]>d[u]+e[i].w){
d[v]=d[u]+e[i].w;
fa[v]=u;
if(!vis[v]){
vis[v]=;
q.push(v);
c[v]++;
}
}
}
}
return d[n];
}
void dfs(int s){
check[s]=;
for(int i=head[s];i!=-;i=e[i].next){
int v=e[i].v;
if(!check[v]) dfs(v);
}
}
int main(){
int cnt = ;
cin>>t;
while(t--){
cnt++;
cin>>n;
for(int i=;i<=n;i++) cin>>a[i];
cin>>m;
memset(check,,sizeof(check));
memset(head,-,sizeof(head));tot=;
for(int i=;i<=m;i++){
int u,v;
cin>>u>>v;
adde(u,v,qp(a[v]-a[u]));
}
int flag = spfa();
if(flag==-){
memset(check,,sizeof(check));
dfs(S);
}
int q;
cin>>q;
cout<<"Case "<<cnt<<":"<<endl;
for(int i=;i<=q;i++){
int x;
cin>>x;
if(flag==- && check[x]) cout<<"?"<<endl;
else if(d[x]< || d[x]==INF) cout<<"?"<<endl;
else cout<<d[x]<<endl;
}
}
return ;
}
Light OJ 1074:Extended Traffic(spfa判负环)的更多相关文章
- LightOJ 1074 Extended Traffic SPFA 消负环
分析:一看就是求最短路,然后用dij,果断错了一发,发现是3次方,有可能会出现负环 然后用spfa判负环,然后标记负环所有可达的点,被标记的点答案都是“?” #include<cstdio> ...
- LightOJ - 1074 Extended Traffic(标记负环)
题意:有n个城市,每一个城市有一个拥挤度ai,从一个城市u到另一个城市v的时间为:(au-av)^3,存在负环.问从第一个城市到达第k个城市所话的时间,如果不能到达,或者时间小于3输出?否则输出所花的 ...
- POJ 3259 Wormholes(SPFA判负环)
题目链接:http://poj.org/problem?id=3259 题目大意是给你n个点,m条双向边,w条负权单向边.问你是否有负环(虫洞). 这个就是spfa判负环的模版题,中间的cnt数组就是 ...
- Poj 3259 Wormholes(spfa判负环)
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 42366 Accepted: 15560 传送门 Descr ...
- spfa判负环
bfs版spfa void spfa(){ queue<int> q; ;i<=n;i++) dis[i]=inf; q.push();dis[]=;vis[]=; while(!q ...
- poj 1364 King(线性差分约束+超级源点+spfa判负环)
King Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14791 Accepted: 5226 Description ...
- 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...
- BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划
BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划 更清真的题面链接:https://files.cnblogs.com/files/winmt/merchant%28zh_ ...
- [P1768]天路(分数规划+SPFA判负环)
题目描述 “那是一条神奇的天路诶~,把第一个神犇送上天堂~”,XDM先生唱着这首“亲切”的歌曲,一道猥琐题目的灵感在脑中出现了. 和C_SUNSHINE大神商量后,这道猥琐的题目终于出现在本次试题上了 ...
随机推荐
- [Cracking the Coding Interview] 4.2 Minimal Tree 最小树
Given a sorted(increasing order) array with unique integer elements, write an algorithm to create a ...
- 集成activiti到现有项目中
1.在lib中添加相关的jar包 2.找到一个activiti.cfg.xml,若是想用现有的数据库需要配置 <?xml version="1.0" encoding=&qu ...
- WPF中的命令与命令绑定(一)
原文:WPF中的命令与命令绑定(一) WPF中的命令与命令绑定(一) 周银辉说到用户输入,可能我们更多地会联想到 ...
- IdFTP中FEAT命令的问题
IdFTP控件很方便开发FTP客户端,用于传输文件.一次笔者的一个在阿里云的服务器突发故障,显示无法登陆FTP,而使用其他客户端(如FlashFxp)经过该项目设置,又可正常使用. 查询后说是FEAT ...
- php之apc浅探
扩展编译: ./configure --enable-apc --with-php-config=/usr/local/php/bin/php-config --prefix=/usr/local/a ...
- 小白学习mysql 之 innodb locks
Innodb 锁类型: Shared and Exclusive Locks Intention Locks Record Locks Gap Locks Next-Key Locks Insert ...
- 1,理解java中的IO
IO中的几种形式 基于字节:InputStream.OutputStream 基于字符:Writer.Reader 基于磁盘:File 基于网络Socket 最终都是字节操作,字符到字节要编码转换 ...
- 【jQuery】 实用 js
[jQuery] 实用 js 1. int 处理 parseInt(") // int 转换 isNaN(page) // 判断是否是int类型 2. string 处理 // C# str ...
- 用起来超爽的Maven——入门篇
你还在为怎样寻找.导入SSH相关依赖包纠结吗? 你还在为没有安装IDE开发工具不能编译.部署.运行项目而纠结吗? 你还在为公司项目目录结构怎样规范而纠结吗? 亲爱的纠结哥,只要你使用了Maven,一切 ...
- Qt Qwdget 汽车仪表知识点拆解2 图像放大
先贴上效果图,注意,没有写逻辑,都是乱动的 这里讲下 这个小汽车的进入过程,其实这个说白了就没有技术含量了,本来应该趁着这个机会学习一下Qt的动画机制,不过随机一想,这个自己写也累不到那里去 下面说下 ...