洛谷 P4168 [Violet]蒲公英 解题报告
P4168 [Violet]蒲公英
题目背景
亲爱的哥哥:
你在那个城市里面过得好吗?
我在家里面最近很开心呢。昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多小朋友也被它杀掉了。我觉得把那么可怕的怪物召唤出来的那个坏蛋也很坏呢。不过奶奶说他是很难受的时候才做出这样的事的……
最近村子里长出了一大片一大片的蒲公英。一刮风,这些蒲公英就能飘到好远的地方了呢。我觉得要是它们能飘到那个城市里面,让哥哥看看就好了呢!
哥哥你要快点回来哦!
爱你的妹妹 Violet
Azure 读完这封信之后微笑了一下。
“蒲公英吗……”
题目描述
在乡下的小路旁种着许多蒲公英,而我们的问题正是与这些蒲公英有关。
为了简化起见,我们把所有的蒲公英看成一个长度为n的序列 \((a_1,a_2..a_n)\),其中 \(a_i\)为一个正整数,表示第\(i\)棵蒲公英的种类编号。
而每次询问一个区间\([l,r]\),你需要回答区间里出现次数最多的是哪种蒲公英,如果有若干种蒲公英出现次数相同,则输出种类编号最小的那个。
注意,你的算法必须是在线的
输入输出格式
输入格式:
第一行两个整数 \(n\),\(m\) ,表示有\(n\)株蒲公英,\(m\)次询问。
接下来一行\(n\)个空格分隔的整数 \(a_i\),表示蒲公英的种类
再接下来\(m\)行每行两个整数 \(l_0,r_0\),我们令上次询问的结果为 \(x\)(如果这是第一次询问, 则 \(x=0\))。
令 \(l=(l_0+x-1)\bmod n + 1,r=(r_0+x-1) \bmod n + 1\),如果 \(l>r\),则交换 \(l,r\) 。
最终的询问区间为\([l,r]\)。
输出格式:
输出m 行。每行一个整数,表示每次询问的结果。
说明
对于 20% 的数据,保证 \(1\le n,m \le 3000\)。
对于 100% 的数据,保证 \(1\le n \le 40000,1\le m \le 50000,1\le a_i \le 10^9\)。
分块有时候还是蛮考思维哒?
这是一道经典的在线区间求众数的问题
设分成大小为\(S\)块
当询问区间\([l.r]\)时,我们把区间拆成\([l,L)\),\([L,R]\),\((R,r]\)三个区间
其中\(L,R\)为块的边界
答案只可能是 \([L,R]\)的众数以及在区间\([l,L)\)和区间\((R,r]\)出现的数字
我们对任意两个块所包含的大区间维护它的众数和每个数字的出现个数
后者需要一个长为\(n\)的数组存储
这样查询的时候,我们只需要枚举边角的每个数字出现个数就行啦,单次复杂度\(O(S)\)
预处理的话,我们需要枚举块的左右边界以及数字集,复杂度\(O(N*T^2)\)
则总复杂度为\(O(MS+N*T^2)\)
考虑块大小取多少时达到平衡
当\(MS=N*T^2\)时平衡
\(N ≈ M\)且\(S*T=N\)
所以\(S^2=N^3\)
\(S=N^{\frac{2}{3}}\)
总复杂度为\(O(N^{\frac{5}{3}})\)
如果用vector存+二分找似乎更快
Code:
#include <cstdio>
#include <cmath>
#include <map>
using namespace std;
const int N=4e4+10;
const int T=40;
int n,m,r,a[N],b[N],seg[T][T][N],num[T][T],L[T],R[T],pos[N],buct[N];
std::map <int,int > ma;
int query(int l,int r)
{
int mx=0,ans,ll=pos[l]+1,rr=pos[r]-1;
if(ll>rr)
{
for(int i=l;i<=r;i++)
{
++buct[a[i]];
if(buct[a[i]]>mx||(buct[a[i]]==mx&&a[i]<ans))
{
mx=buct[a[i]];
ans=a[i];
}
}
for(int i=l;i<=r;i++)
buct[a[i]]=0;
}
else
{
mx=seg[ll][rr][0],ans=num[ll][rr];
for(int i=l;i<L[ll];i++)
{
++buct[a[i]];
if(buct[a[i]]+seg[ll][rr][a[i]]>mx||(buct[a[i]]+seg[ll][rr][a[i]]==mx&&a[i]<ans))
{
mx=buct[a[i]]+seg[ll][rr][a[i]];
ans=a[i];
}
}
for(int i=R[rr]+1;i<=r;i++)
{
++buct[a[i]];
if(buct[a[i]]+seg[ll][rr][a[i]]>mx||(buct[a[i]]+seg[ll][rr][a[i]]==mx&&a[i]<ans))
{
mx=buct[a[i]]+seg[ll][rr][a[i]];
ans=a[i];
}
}
for(int i=l;i<L[ll];i++)
buct[a[i]]=0;
for(int i=R[rr]+1;i<=r;i++)
buct[a[i]]=0;
}
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",a+i),ma[a[i]]=1;
for(map <int,int>::iterator it=ma.begin();it!=ma.end();it++)
it->second=++r;
for(int i=1;i<=n;i++)
b[ma[a[i]]]=a[i],a[i]=ma[a[i]];
int s=pow(n,0.6666667),t;
for(t=1;t*s<=n;t++)
L[t]=(t-1)*s+1,R[t]=t*s;
if(R[t-1]<n) L[t]=R[t-1]+1,R[t]=n;
else --t;
for(int i=1;i<=t;i++)
for(int j=L[i];j<=R[i];j++)
pos[j]=i;
for(int i=1;i<=t;i++)
for(int j=i;j<=t;j++)
{
for(int k=L[i];k<=R[j];k++)
{
++seg[i][j][a[k]];
if(seg[i][j][a[k]]>seg[i][j][0]||(seg[i][j][a[k]]==seg[i][j][0]&&a[k]<num[i][j]))
{
num[i][j]=a[k];
seg[i][j][0]=seg[i][j][a[k]];
}
}
}
int lastans=0;
for(int l,r,i=1;i<=m;i++)
{
scanf("%d%d",&l,&r);
l=(l+lastans-1)%n+1,r=(r+lastans-1)%n+1;
if(l>r) swap(l,r);
printf("%d\n",lastans=b[query(l,r)]);
}
return 0;
}
2018.8.27
洛谷 P4168 [Violet]蒲公英 解题报告的更多相关文章
- 洛谷 P4168 [Violet] 蒲公英
历尽千辛万苦终于AC了这道题目... 我们考虑1个区间\([l,r]\), 被其完整包含的块的区间为\([L,R]\) 那么众数的来源? 1.\([l,L)\)或\((R,r]\)中出现的数字 2.\ ...
- [洛谷P4168][Violet]蒲公英
题目大意:有$n(n\leqslant4\times10^4)$个数,$m(m\leqslant5\times10^4)$个询问,每次问区间$[l,r]$内的众数,若相同输出最小的,强制在线. 题解: ...
- 洛谷 P1783 海滩防御 解题报告
P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...
- 洛谷 P4597 序列sequence 解题报告
P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...
- 洛谷1087 FBI树 解题报告
洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...
- 「分块系列」「洛谷P4168 [Violet]」蒲公英 解题报告
蒲公英 Description 我们把所有的蒲公英看成一个长度为\(n\)的序列(\(a_1,a_2,...a_n\)),其中\(a_i\)为一个正整数,表示第i棵蒲公英的种类的编号. 每次询问一个区 ...
- 洛谷 P3349 [ZJOI2016]小星星 解题报告
P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...
- 洛谷 P3177 树上染色 解题报告
P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...
- 洛谷 P4705 玩游戏 解题报告
P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...
随机推荐
- jenkins+maven+docker集成java发布(一)自动发布
JAVA项目持续集成发布 标签(空格分隔): java jenkins 微服务中持续集成自动发布是很重要的一个环节,将不同的模块应用自动部署到一台或者N台服务器中如果采用人工部署的方式不太现实 git ...
- 解决MySQL server has gone away问题的两种有效办法
最近做网站有一个站要用到WEB网页采集器功能,当一个PHP脚本在请求URL的时候,可能这个被请求的网页非常慢慢,超过了mysql的 wait-timeout时间,然后当网页内容被抓回来后,准备插入到M ...
- stm32+lwip(一):使用STM32CubeMX生成项目
我是卓波,很高兴你来看我的博客. 系列文章: stm32+lwip(一):使用STM32CubeMX生成项目 stm32+lwip(二):UDP测试 stm32+lwip(三):TCP测试 stm32 ...
- JAVA反射之 Field (属性)
主要方法: public static void main(String[] args) throws Exception { Class<?> clazz = Class.forName ...
- Educational Codeforces Round 47 (Rated for Div. 2) :A. Game Shopping
题目链接:http://codeforces.com/contest/1009/problem/A 解题心得: 题意就是给你两个数列c,a,你需要从c中选择一个子串从a头开始匹配,要求子串中的连续的前 ...
- SQL数据库 面试题
一.sql理论题 1.触发器的作用? 答:触发器是一中特殊的存储过程,主要是通过事件来触发而被执行的.它可以强化约束,来维护数据的完整性和一致性,可以跟踪数据库内的操作从而不允许未经许可的更新和变化. ...
- EF报错“EntityValidationErrors”
在使用EF更新实体的时候报错,显示界面如下: 点击查看详情: 在查看详细的窗体中,EntityValidationErrors里面的也看不到具体的错误原因.在网上 ...
- C++重载赋值操作符
1.C++中重载赋值操作函数应该返回什么? 类重载赋值操作符一般都是作为成员函数而存在的,那函数应该返回什么类型呢?参考内置类型的赋值操作,例如 int x,y,z; x=y=z=15; 赋值行为相当 ...
- Vue学习(三):数据绑定语法
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Linux常用命令及搭建测试环境
题外话:三大操作系统------Linux.Unix.Windows,Unix系统如常见的Mac OS,Linux的很多命令跟Unix是通用的,所以就有一些开发人猿喜欢用苹果的原因.Linux发行版特 ...