题目:http://cogs.pro:8080/cogs/problem/problem.php?pid=2259

如果构造生成函数是许多个 \( (1+x^{k}+x^{2k}+...) \) 相乘,不好算排列数;

发现排列数和肽链的长度,使用的种类数有关;

所以构造 \( A(x) \),次数是质量,系数是这个质量的氨基酸有多少种;

发现答案就是 \( B(x) = 1 + A(x) + A(x)^{2} + ... \),其中 \( A(x) \) 的次数就是长度;

所以 \( B(x) = \frac{1}{1-A(x)} ( mod x^{n+1} ) \),多项式求逆即可。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=(<<),mod=;
int n,m,f[xn],g[xn],c[xn],rev[xn];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
ll pw(ll a,int b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void ntt(int *a,int tp,int lim)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
int len=(mid<<),wn=pw(,tp==?(mod-)/len:(mod-)-(mod-)/len);
for(int j=;j<lim;j+=len)
for(int k=,w=;k<mid;k++,w=(ll)w*wn%mod)
{
int x=a[j+k],y=(ll)w*a[j+mid+k]%mod;
a[j+k]=upt(x+y); a[j+mid+k]=upt(x-y);
}
}
if(tp==)return; int inv=pw(lim,mod-);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*inv%mod;
}
void inv(int *a,int *b,int n)
{
if(n==){b[]=pw(a[],mod-); return;}
inv(a,b,(n+)>>);
int lim=,l=;
while(lim<n+n)lim<<=,l++;
for(int i=;i<lim;i++)rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
for(int i=;i<n;i++)c[i]=a[i];
for(int i=n;i<lim;i++)c[i]=;
ntt(c,,lim); ntt(b,,lim);
for(int i=;i<lim;i++)b[i]=upt((-(ll)c[i]*b[i])%mod*b[i]%mod);//c !a
ntt(b,-,lim);
for(int i=n;i<lim;i++)b[i]=;
}
int main()
{
//freopen("polypeptide.in","r",stdin);
//freopen("polypeptide.out","w",stdout);
n=rd(); m=rd(); int mx=;
for(int i=,x;i<=m;i++)x=rd(),f[x]++,mx=max(mx,x);
f[]=;
for(int i=;i<=mx;i++)f[i]=upt(-f[i]);
inv(f,g,n+);
printf("%d\n",g[n]);
return ;
}

COGS 2259 异化多肽 —— 生成函数+多项式求逆的更多相关文章

  1. COGS 2259 异化多肽——生成函数+多项式求逆

    题目:http://cogs.pro:8080/cogs/problem/problem.php?pid=2259 详见:https://www.cnblogs.com/Zinn/p/10054569 ...

  2. 【XSY2612】Comb Avoiding Trees 生成函数 多项式求逆 矩阵快速幂

    题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 ...

  3. 2019.01.01 bzoj3625:小朋友和二叉树(生成函数+多项式求逆+多项式开方)

    传送门 codeforces传送门codeforces传送门codeforces传送门 生成函数好题. 卡场差评至今未过 题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: ...

  4. Luogu5162 WD与积木(生成函数+多项式求逆)

    显然的做法是求出斯特林数,但没有什么优化空间. 考虑一种暴力dp,即设f[i]为i块积木的所有方案层数之和,g[i]为i块积木的方案数.转移时枚举第一层是哪些积木,于是有f[i]=g[i]+ΣC(i, ...

  5. 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根

    首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...

  6. 洛谷P4721 【模板】分治 FFT(生成函数+多项式求逆)

    传送门 我是用多项式求逆做的因为分治FFT看不懂…… upd:分治FFT的看这里 话说这个万恶的生成函数到底是什么东西…… 我们令$F(x)=\sum_{i=0}^\infty f_ix^i,G(x) ...

  7. 牛客IOI周赛17-提高组 卷积 生成函数 多项式求逆 数列通项公式

    LINK:卷积 思考的时候 非常的片面 导致这道题没有推出来. 虽然想到了设生成函数 G(x)表示最后的答案的普通型生成函数 不过忘了化简 GG. 容易推出 \(G(x)=\frac{F(x)}{1- ...

  8. 洛谷P4841 城市规划(生成函数 多项式求逆)

    题意 链接 Sol Orz yyb 一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到... 正解是先设\(g(n)\)表示\(n\)个 ...

  9. [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)

    城市规划 时间限制:40s      空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...

随机推荐

  1. 查看linux系统版本信息(Oracle Linux、Centos Linux、Redhat Linux、Debian、Ubuntu)

    一.查看Linux系统版本的命令(3种方法) 1.cat /etc/issue,此命令也适用于所有的Linux发行版. [root@S-CentOS home]# cat /etc/issue Cen ...

  2. 大数据架构之:Storm

         Storm是一个免费开源.分布式.高容错的实时计算系统,Twitter开发贡献给社区的.Storm令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求. Storm经常用 ...

  3. memcpy与memmove

    函数原型: void* memcpy(void *dst,void const *src,size_t count) void* memmove(void *dst,void const *src,s ...

  4. JAVA基础补漏--字符串

    字符串常量池 String a="abc"; String b="abc"; char[] str = {"a","b" ...

  5. <转载>获取运行中的TeamViewer的账号和密码

    #define WIN32_LEAN_AND_MEAN #include <windows.h> #include <iostream> #pragma comment( li ...

  6. ACM的输入输出总结

    关于ACM的输入输出(一) 一般来说ACM的现场赛会规定输入输出 或者是文件输入标准输出 也可能是文件输入文件输出 如果没有规定的话那么一般就是标准的输入输出了 那说一下输入输出的重定向 一般用下面两 ...

  7. MATLAB一个数组中另一个数组的值

    c = setdiff(a,b) 删掉素组a中数组b的元素 如:

  8. Binding RelativeSource

    IsChecked="{Binding IsExpanded, Mode=TwoWay, RelativeSource={RelativeSource TemplatedParent}}&q ...

  9. 代码题 — 剑指offer题目、新增题目

     1.剪绳子 给你一根长度为n的绳子,请把绳子剪成m段 (m和n都是整数,n>1并且m>1)每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]*k[1]*...*k[m] ...

  10. mysql性能优化之索引优化

    作为免费又高效的数据库,mysql基本是首选.良好的安全连接,自带查询解析.sql语句优化,使用读写锁(细化到行).事物隔离和多版本并发控制提高并发,完备的事务日志记录,强大的存储引擎提供高效查询(表 ...