题目描述

给出一棵树,定义一个点到一条路径的距离为这个点到这条路径上所有点的距离的最小值。求一条长度不超过s的路径,使得所有点到这条路径的距离的最大值最小。

输入

包含n行: 第1行,两个正整数n和s,中间用一个空格隔开。其中n为树网结点的个数,s为树网的核的长度的上界。设结点编号依次为1, 2, ..., n。 从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,“2 4 7”表示连接结点2与4的边的长度为7。 所给的数据都是正确的,不必检验。

输出

只有一个非负整数,为指定意义下的最小偏心距。

样例输入

5 2
1 2 5
2 3 2
2 4 4
2 5 3

样例输出

5


题解

树的直径+双指针法+单调队列

首先易证路径一定在树的直径上(容易使用反证法证明)。

那么可以找出树的直径,然后考虑答案是怎么得到的:

(上边的直线是直径,红色的为选定路径)

由于保证了是直径,因此路径左边的贡献只有直径左端点到路径左端点,路径右边的贡献只有直径右端点到路径右端点;路径中的贡献为子树(图中三角形)中最远的点。

那么可以处理出每个点除直径的子树内最远的点作为每个点的权值。

然后考虑:随着左端点的移动,右端点的决策位置是单调不降的。因此可以使用双指针法并用单调队列维护区间最大值。

时间复杂度$O(n)$

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 500010
using namespace std;
int head[N] , to[N << 1] , len[N << 1] , next[N << 1] , cnt , fa[N] , deep[N] , vis[N] , v[N] , sum[N] , tot , q[N] , l , r;
inline void add(int x , int y , int z)
{
to[++cnt] = y , len[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x])
fa[to[i]] = x , deep[to[i]] = deep[x] + len[i] , dfs(to[i]);
}
void getdis(int x , int now , int p)
{
int i;
v[p] = max(v[p] , now);
for(i = head[x] ; i ; i = next[i])
if(!vis[to[i]])
vis[to[i]] = 1 , getdis(to[i] , now + len[i] , p);
}
int main()
{
int n , m , i , x , y , z , mx , p = 0 , ans = 1 << 30;
scanf("%d%d" , &n , &m);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d%d" , &x , &y , &z) , add(x , y , z) , add(y , x , z);
dfs(1) , mx = -1;
for(i = 1 ; i <= n ; i ++ )
if(deep[i] > mx)
x = i , mx = deep[i];
fa[x] = deep[x] = 0 , dfs(x) , mx = -1;
for(i = 1 ; i <= n ; i ++ )
if(deep[i] > mx)
y = i , mx = deep[i];
for(i = y ; i ; i = fa[i]) vis[i] = 1;
for(i = y ; i ; i = fa[i]) getdis(i , 0 , ++tot) , sum[tot + 1] = sum[tot] + deep[i] - deep[fa[i]];
for(i = 1 ; i <= tot ; i ++ )
{
while(p <= tot && sum[p + 1] - sum[i] <= m)
{
p ++ ;
while(l <= r && v[q[r]] <= v[p]) r -- ;
q[++r] = p;
}
ans = min(ans , max(max(sum[i] , sum[tot] - sum[p]) , v[q[l]]));
if(q[l] <= i) l ++ ;
}
printf("%d\n" , ans);
return 0;
}

【bzoj1999】[Noip2007]Core树网的核 树的直径+双指针法+单调队列的更多相关文章

  1. [bzoj1999][noip2007]Core树网的核

    好久没写题解了.这题不算太水就写一下题解. 话说回来,虽然不水但是挺裸.可以说题意即一半题解了. 我猜粘了题面也没有人去看的,所以直接人话题意了. 给一棵树,点数1e6,(当年noip的n当然是只有3 ...

  2. [BZOJ1999][codevs1167][Noip2007]Core树网的核

    [BZOJ1999][codevs1167][Noip2007]Core树网的核 试题描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(t ...

  3. BZOJ_1999_[Noip2007]Core树网的核_单调队列+树形DP

    BZOJ_1999_[Noip2007]Core树网的核_单调队列+树形DP Description 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T ...

  4. [Noip2007]Core树网的核

    嘟嘟嘟 首先求树的直径两次bfs即可,实际上bfs就是最短路,因为树上路径是唯一的,所以用任何一种遍历方法都行(spfa和dijkstra当然也可以). 可以证明,只要求出任意一条直径就行了,为什么呢 ...

  5. bzoj 1999: [Noip2007]Core树网的核【树的直径+单调队列】

    我要懒死了,所以依然是lyd的课件截图 注意是min{max(max(d[uk]),dis(u1,ui),dis(uj,un))},每次都从这三个的max里取min #include<iostr ...

  6. 洛谷 1099 ( bzoj 1999 ) [Noip2007]Core树网的核

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1999 <算法竞赛进阶指南>346页.https://www.cnblogs.co ...

  7. 【BZOJ1999】【NOIP2007】树网的核 单调队列优化DP

    题目描述 题目很长,大家自己去看吧. bzoj vijos 原题\(n\leq 300\) 加强版\(n\leq 500000\) 题解 这种东西当然要猜结论的啦,否则会比较麻烦. 结论1:如果有很多 ...

  8. 树网的核[树 floyd]

    描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T ...

  9. 【DFS好题】BZOJ1999- [Noip2007]Core树网的核(数据加强版)

    NOIP的数据好水,一开始有好几个错结果NOIP数据就水过了?? [题目大意] 求无根树的直径上一段不超过S长的链,使得偏心距最小.具体概念见原题. [思路] 首先明确几个性质: (1)对于树中的任意 ...

随机推荐

  1. Git推送到远程分支出错

    执行git push -u origin master fatal: 'git@github.com:qilinonline/git_test.git' does not appear to be a ...

  2. thinkphp5阿里大于短信接口

    function autumn_sendsms($tel,$stype){ $pd_go=true; if($tel==''){ $msg='手机号不能为空'; $pd_go=false; } if( ...

  3. thinkphp5一些文件夹用法

    一.vendor通常放一些第三方的文件,如短信.支付宝等.用法: 1.在vendor中建一个文件夹: 2.在文件夹中新建一个类:主要命名空间(没有vendor ):如下面: 3.在控制器中调用,除了通 ...

  4. 八、USB驱动分析

    学习目标:分析USB驱动源码结构. 一.Windows下USB驱动理论问题 1. 当usb设备接入PC时,右下角弹出"发现AAA",并弹出对话框,提示安装驱动程序.没有驱动程序,W ...

  5. pyc是个什么鬼?

    1.Python是一门解释型语音? 我初学Python时,听到的关于Python的第一句话就是,Python是一门解释型语音,我就这样一直相信下去,知道发现了*.pyc文件的存在.如果是解释型语音,那 ...

  6. 014---Django的中间件

     前戏 我们在前面的课程中已经学会了给视图函数加装饰器来判断是用户是否登录,把没有登录的用户请求跳转到登录页面.我们通过给几个特定视图函数加装饰器实现了这个需求.但是以后添加的视图函数可能也需要加上装 ...

  7. SIMD数据并行(三)——图形处理单元(GPU)

    在计算机体系中,数据并行有两种实现路径:MIMD(Multiple Instruction Multiple Data,多指令流多数据流)和SIMD(Single Instruction Multip ...

  8. 关于PHP性能提升踩过的一些坑

        性能这个东西,在网站规模到达一定程度后,会是一个永恒的主题.关于这方面,本人有一些拙见,现在拿出来,大家一起探讨下.     1.编码过程中,传递参数时,尽量少使用‘引用传参’.这是一个巨坑啊 ...

  9. HBase java API 的使用范例(增,删,查,扫描)

    编辑pom.xml <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase ...

  10. FRDM-KL25Z开发板上电试用

    1. 硬件平台:FRDM-KL25Z开发板,先看下板子,Cortex M0+的内核,板子上自带MMA8451Q的三轴加速度传感器,触摸滑动按键,openSDA调试器.MCU主频48MHz,有16KB ...