对于每个质数求出其作为最大质因子时最多能有几个质因子,开始时将这些ak1~akmaxk扔进堆。考虑构造方案,使得每次取出最大值后,最大质因子、质因子数均与其相同且恰好比它小的数都在堆里。类似暴搜,对于当前考虑的质因子,可以将其去掉并乘上一个恰好比它小的小的质因子,也可以转而考虑下一个质因子。于是给堆中元素记录当前考虑的质因子、最小质因子,每次进行两种更新即可。

  正解似乎是可持久化可并堆+dp,当然不会。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define ll long long
#define N 800010
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
ll n;int k;
int prime[],cnt;
bool flag[];
struct data
{
ll x;int i,j,k;
bool operator <(const data&a) const
{
return x<a.x;
}
};
priority_queue<data> q;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4524.in","r",stdin);
freopen("bzoj4524.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
cin>>n>>k;
for (int i=;i<;i++)
for (int j=;i*j<;j++)
flag[i*j]=;
for (int i=;i<;i++) if (!flag[i]) prime[++cnt]=i;
for (int i=;i<=cnt&&prime[i]<=n;i++)
{
ll x=;
for (int j=;n/prime[i]>=x;j++)
{
x*=prime[i];
q.push((data){x,i,i,i});
}
}
k--;
while (k--)
{
data x=q.top();q.pop();
if (x.j>&&(x.j<x.i||x.x%(prime[x.i]*prime[x.i])==))
{
ll t=x.x/prime[x.j]*prime[x.j-];
if (t%prime[x.j]==) q.push((data){t,x.i,x.j,x.j-});
else q.push((data){t,x.i,x.j-,x.j-});
}
if (x.k>&&x.k<x.j)
{
ll t=x.x/prime[x.k]*prime[x.k-];
if (t%prime[x.k]==) q.push((data){t,x.i,x.k,x.k-});
else q.push((data){t,x.i,x.k-,x.k-});
}
}
cout<<q.top().x;
return ;
}

BZOJ4524 CQOI2016伪光滑数(堆)的更多相关文章

  1. 【BZOJ4524】[Cqoi2016]伪光滑数 堆(模拟搜索)

    [BZOJ4524][Cqoi2016]伪光滑数 Description 若一个大于1的整数M的质因数分解有k项,其最大的质因子为Ak,并且满足Ak^K<=N,Ak<128,我们就称整数M ...

  2. 【BZOJ-4524】伪光滑数 堆 + 贪心 (暴力) [可持久化可并堆 + DP]

    4524: [Cqoi2016]伪光滑数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 183  Solved: 82[Submit][Status] ...

  3. BZOJ4524 [Cqoi2016]伪光滑数

    BZOJ上的题面很乱,这里有一个题面. 题解: 正解是可持久化可并堆+DP,可惜我不会... 但暴力也可过这道题. 先在不超过N的前提下,在大根堆里加入每个质数的J次方,1<=j, 然后就可以发 ...

  4. @bzoj - 4524@ [Cqoi2016]伪光滑数

    目录 @description@ @solution@ @version - 1@ @version - 2@ @accepted code@ @version - 1@ @version - 2@ ...

  5. [bzoj4524] [loj#2047] [Cqoi2016] 伪光滑数

    Description 若一个大于 \(1\) 的整数 \(M\) 的质因数分解有 \(k\) 项,其最大的质因子为 \(Ak\) ,并且满足 \(Ak^K \leq N\) , \(Ak<12 ...

  6. [CQOI2016]伪光滑数

    题目描述 若一个大于1的整数M的质因数分解有k项,其最大的质因子为Ak,并且满足Ak^K<=N,Ak<128,我们就称整数M为N-伪 光滑数.现在给出N,求所有整数中,第K大的N-伪光滑数 ...

  7. Bzoj 4524 [Cqoi2016]伪光滑数(堆)

    题面 题解 先筛出$<128$的质数,很少,打个表即可 然后钦定一个质数最大,不断替换即可(丢进大根堆里面,然后取出一个,替换在丢进去即可) 具体来说,设一个四元组$[t,x,y,z]$表示当前 ...

  8. 2021.08.01 P4359 伪光滑数(二叉堆)

    2021.08.01 P4359 伪光滑数(二叉堆) [P4359 CQOI2016]伪光滑数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 若一个大于 11 的整数 MM ...

  9. Loj 2047 伪光滑数

    Loj 2047 伪光滑数 正解较复杂,但这道题其实可以通过暴力解决. 预处理出 \(128\) 内的所有质数,把 \(n\) 内的 \(prime[i]^j\) 丢进堆中,再尝试对每个数变形,除一个 ...

随机推荐

  1. jQuery Ajax请求后台数据并在前台接收

    1.ajax基本语法 <script> $(function(){ $('#sub').click(function(){ var username=$('#username').val( ...

  2. SI - 系统 - 操作系统简述 (Operating System)

    Unix 操作系统:System V.BSD Microsoft Windows Apple Mac OS Linux FreeBSD 安装 https://jingyan.baidu.com/art ...

  3. C# 隐藏窗口标题栏、隐藏任务栏图标

    //没有标题 this.FormBorderStyle = FormBorderStyle.None; //任务栏不显示 this.ShowInTaskbar = false;

  4. 【Python让生活更美好01】os与shutil模块的常用方法总结

    Python作为一种解释型的高级语言,脚本语言,又被称作“胶水语言”,就是因为其灵活的语法和其依靠浩如烟海的第三方包实现的丰富多彩的功能,而os和shutil就是这样一种功能强大的模块,可以非常快捷地 ...

  5. [POJ 1004] Financial Management C++解题

    参考:https://www.cnblogs.com/BTMaster/p/3525008.html #include <iostream> #include <cstdio> ...

  6. 48-Identity MVC:Model前后端验证

    1-创建RegisterViewModel类 namespace MvcCookieAuthSample.ViewModel { public class RegisterViewModel { [R ...

  7. python2.7入门---变量类型&案例

      这篇文章呢,主要是用来记录python中的变量类型学习内容的.接下来就来看一下变量类型,那么什么是变量呢.变量存储在内存中的值.这就意味着在创建变量时会在内存中开辟一个空间.基于变量的数据类型,解 ...

  8. vue 项目如何使用微信分享接口

    首先做微信网页都要接入微信sdk: 安装sdk npm install weixin-js-sdk --save 具体可以查看微信公众平台技术文档:https://mp.weixin.qq.com/w ...

  9. 58HouseSearch项目迁移到asp.net core

    前言 58HouseSearch这个项目原本是基于ASP.NET MVC 4写的,开发环境是Windows+VS2015,发布平台是linux+mono+jexus,这样看来整个项目基本已经满足跨平台 ...

  10. FPGA的嵌入式乘法器

    1. FPGA主要应用在并行处理资源的应用,视频与图像处理,无线通信的中频调制解调器. 嵌入式乘法器可以配置成一个 18 × 18 乘法器,或者配置成两个 9 × 9 乘法器.对于那些大于18 × 1 ...