In most professional sporting events, cheerleaders play a major role in entertaining the spectators. Their
roles are substantial during breaks and prior to start of play. The world cup soccer is no exception.
Usually the cheerleaders form a group and perform at the centre of the eld. In addition to this group,
some of them are placed outside the side line so they are closer to the spectators. The organizers would
like to ensure that at least one cheerleader is located on each of the four sides. For this problem, we
will model the playing ground as an
M
N
rectangular grid. The constraints for placing cheerleaders
are described below:
There should be at least one cheerleader on each of the four sides. Note that, placing a cheerleader
on a corner cell would cover two sides simultaneously.
There can be at most one cheerleader in a cell.
All the cheerleaders available must be assigned to a cell. That is, none of them can be left out.
The organizers would like to know, how many ways they can place the cheerleaders while maintaining
the above constraints. Two placements are different, if there is at least one cell which contains a
cheerleader in one of the placement but not in the other.
Input
The rst line of input contains a positive integer
T
50, which denotes the number of test cases.
T
lines then follow each describing one test case. Each case consists of three nonnegative integers, 2
M
,
N
20 and
K
500. Here
M
is the number of rows and
N
is the number of columns in the grid.
K
denotes the number of cheerleaders that must be assigned to the cells in the grid.
Output
For each case of input, there will be one line of output. It will rst contain the case number followed by
the number of ways to place the cheerleaders as described earlier. Look at the sample output for exact
formatting. Note that, the numbers can be arbitrarily large. Therefore you must output the answers
modulo
1000007.
Sample Input
2
2 2 1
2 3 2
Sample Output
Case 1: 0
Case 2: 2
 
简单的计数问题;
题目所说:第一行,最后一行,第一列,最后一列都得有石子;
设集合A:不在第一行,
集合B:不在最后一行;
集合C:不在第一列;
集合D:不在最后一列;
总集合为S的话,那么我们要求的就是在S中而且不在集合ABCD中的个数;
那我们用二进制来表示,总的数量为2^4=16种情况;
容斥一下就Ok了;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 2000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e6 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-4
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int c[503][503];
int n, m, k;
void init() {
c[0][0] = 1;
for (int i = 0; i <= 503; i++) {
c[i][0] = c[i][i] = 1;
for (int j = 1; j < i; j++)c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
}
} int main() {
// ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
int T; cin >> T;
init(); int tot = 0;
while (T--) {
tot++;
cin >> n >> m >> k;
cout << "Case " << tot << ": ";
int sum = 0;
for (int i = 0; i < 16; i++) {
int bk = 0;
int r = n, C = m;
if (i & 1) { bk++; r--; }
if (i & 2) { bk++; r--; }
if (i & 4) { bk++; C--; }
if (i & 8) { bk++; C--; }
if (bk % 2) {
sum = (sum + mod - c[C*r][k]) % mod;
}
else sum = (sum + c[C*r][k]) % mod;
}
cout << sum << endl;
}
return 0;
}

Cheerleaders UVA - 11806 计数问题的更多相关文章

  1. Cheerleaders UVA - 11806

    题目大意是: 在一个m行n列的矩形网格中放置k个相同的石子,问有多少种方法?每个格子最多放一个石子,所有石子都要用完,并且第一行.最后一行.第一列.最后一列都要有石子. 容斥原理.如果只是n * m放 ...

  2. Cheerleaders UVA - 11806(容斥+二进制技巧)

    #include <iostream> #include <cstdio> #include <sstream> #include <cstring> ...

  3. uva 11806 Cheerleaders

    // uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...

  4. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  5. UVA 11806 Cheerleaders dp+容斥

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  6. UVa 11806 Cheerleaders (容斥原理+二进制表示状态)

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  7. uva 11806 Cheerleaders (容斥)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  8. UVA 11806 Cheerleaders (组合+容斥原理)

    自己写的代码: #include <iostream> #include <stdio.h> #include <string.h> /* 题意:相当于在一个m*n ...

  9. UVA 11806 Cheerleaders (容斥原理)

    题意 一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法. 思路 设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A ...

随机推荐

  1. Theos简介

    [Theos简介] Theos is a cross-platform suite of development tools for managing, developing, and deployi ...

  2. IDEA MAVEN 1.8无效的源发行版

    最近想将自己在IDEA上开发的MAVEN项目切换到JDK1.8版本上,结果IDEA报1.8无效的源发行版.下面说一下自己的解决方案: 1.pom文件 <build> <plugins ...

  3. Build Path

    ------------siwuxie095 什么是 Build Path? 为什么使用 Build Path? 如: (1)创建一个Java工程:LearnBuildPath (2)点击 Next, ...

  4. RabbitMQ(pika模块)

    RabbitMQ 基础 2 3 4 5 6 7 8 安装配置epel源    $ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-r ...

  5. poj1722 SUBTRACT

    应该是基础的dp练手题 线性dp最主要的就是关于阶段的划分,这个题中我没想到的一点就是开状态的时候使用了前i个数能合成的数来记录 我自己的想法就是类似于区间dp这样的记录方法,这种方法确实开了很多冗余 ...

  6. 网页中的foot底部定位问题

    有时候,我们会碰到这样一个问题. 网页底部一般有个foot对吧,放置一些友情链接版权声明什么的,这个模块是如何定位的? 要是直接放内容区域的下面的话,假如是内容区域的高度不够的话,那么foot下面是会 ...

  7. bootstrap实现菜单定位

    <!DOCTYPE html><html lang="zh-cn"><head><meta charset="utf-8&quo ...

  8. 编写高质量代码改善C#程序的157个建议——建议15: 使用dynamic来简化反射实现

    建议15: 使用dynamic来简化反射实现 dynamic是Framework 4.0的新特性.dynamic的出现让C#具有了弱语言类型的特性.编译器在编译的时候不再对类型进行检查,编译器默认dy ...

  9. Sharepoint 文档知识管理系统--Word在试图打开文件时遇到错误

    在系统开发中,遇到问题:SharePoint 2010与Office 2010安装在一台服务器上,当用Office打开SharePoint文档库中的文档时,遇到“Word在试图打开文件时遇到错误,请尝 ...

  10. Linux 命令之chcon

    chcon命令:修改对象(文件)的安全上下文.比如:用户:角色:类型:安全级别.主要用在selinux中用来更改安全上下文.命令格式: Chcon [OPTIONS…] CONTEXT FILES…. ...