In most professional sporting events, cheerleaders play a major role in entertaining the spectators. Their
roles are substantial during breaks and prior to start of play. The world cup soccer is no exception.
Usually the cheerleaders form a group and perform at the centre of the eld. In addition to this group,
some of them are placed outside the side line so they are closer to the spectators. The organizers would
like to ensure that at least one cheerleader is located on each of the four sides. For this problem, we
will model the playing ground as an
M
N
rectangular grid. The constraints for placing cheerleaders
are described below:
There should be at least one cheerleader on each of the four sides. Note that, placing a cheerleader
on a corner cell would cover two sides simultaneously.
There can be at most one cheerleader in a cell.
All the cheerleaders available must be assigned to a cell. That is, none of them can be left out.
The organizers would like to know, how many ways they can place the cheerleaders while maintaining
the above constraints. Two placements are different, if there is at least one cell which contains a
cheerleader in one of the placement but not in the other.
Input
The rst line of input contains a positive integer
T
50, which denotes the number of test cases.
T
lines then follow each describing one test case. Each case consists of three nonnegative integers, 2
M
,
N
20 and
K
500. Here
M
is the number of rows and
N
is the number of columns in the grid.
K
denotes the number of cheerleaders that must be assigned to the cells in the grid.
Output
For each case of input, there will be one line of output. It will rst contain the case number followed by
the number of ways to place the cheerleaders as described earlier. Look at the sample output for exact
formatting. Note that, the numbers can be arbitrarily large. Therefore you must output the answers
modulo
1000007.
Sample Input
2
2 2 1
2 3 2
Sample Output
Case 1: 0
Case 2: 2
 
简单的计数问题;
题目所说:第一行,最后一行,第一列,最后一列都得有石子;
设集合A:不在第一行,
集合B:不在最后一行;
集合C:不在第一列;
集合D:不在最后一列;
总集合为S的话,那么我们要求的就是在S中而且不在集合ABCD中的个数;
那我们用二进制来表示,总的数量为2^4=16种情况;
容斥一下就Ok了;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 2000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e6 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-4
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int c[503][503];
int n, m, k;
void init() {
c[0][0] = 1;
for (int i = 0; i <= 503; i++) {
c[i][0] = c[i][i] = 1;
for (int j = 1; j < i; j++)c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
}
} int main() {
// ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
int T; cin >> T;
init(); int tot = 0;
while (T--) {
tot++;
cin >> n >> m >> k;
cout << "Case " << tot << ": ";
int sum = 0;
for (int i = 0; i < 16; i++) {
int bk = 0;
int r = n, C = m;
if (i & 1) { bk++; r--; }
if (i & 2) { bk++; r--; }
if (i & 4) { bk++; C--; }
if (i & 8) { bk++; C--; }
if (bk % 2) {
sum = (sum + mod - c[C*r][k]) % mod;
}
else sum = (sum + c[C*r][k]) % mod;
}
cout << sum << endl;
}
return 0;
}

Cheerleaders UVA - 11806 计数问题的更多相关文章

  1. Cheerleaders UVA - 11806

    题目大意是: 在一个m行n列的矩形网格中放置k个相同的石子,问有多少种方法?每个格子最多放一个石子,所有石子都要用完,并且第一行.最后一行.第一列.最后一列都要有石子. 容斥原理.如果只是n * m放 ...

  2. Cheerleaders UVA - 11806(容斥+二进制技巧)

    #include <iostream> #include <cstdio> #include <sstream> #include <cstring> ...

  3. uva 11806 Cheerleaders

    // uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...

  4. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  5. UVA 11806 Cheerleaders dp+容斥

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  6. UVa 11806 Cheerleaders (容斥原理+二进制表示状态)

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  7. uva 11806 Cheerleaders (容斥)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  8. UVA 11806 Cheerleaders (组合+容斥原理)

    自己写的代码: #include <iostream> #include <stdio.h> #include <string.h> /* 题意:相当于在一个m*n ...

  9. UVA 11806 Cheerleaders (容斥原理)

    题意 一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法. 思路 设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A ...

随机推荐

  1. SonarQube在CentOS上的安装

    1 简介 SonarQube 是一个用于代码质量管理的开放平台.通过插件机制,Sonar 可以集成不同的测试工具,代码分析工具,以及持续集成工具.与持续集成工具(例如 Hudson/Jenkins 等 ...

  2. d3.js 清除svg

    rave.select(el).html(''); // 不推荐rave.selectAll("svg > *").remove(); // 移除svg内部节点rave.se ...

  3. 201671010140. 2016-2017-2 《Java程序设计》java学习第五周

    java学习第五周心得体会        本周,是Java学习第五周,随着时间推移,随着课本内容的推进,我们接触到的程序也开始变得越来越复杂,不再是二三章那些用来练手的小程序了,这一点,在我们的例题运 ...

  4. Oracle 中 over() 函数

    :first-child { margin-top: 0; } blockquote > :last-child { margin-bottom: 0; } img { border: 0; m ...

  5. java基础之多线程四:简单案例

    多线程案例: 有一个包包的数量为100个,分别从实体店和官网进行售卖.使用多线程的方式,分别打印实体店和官网卖出包包的信息.分别统计官网和实体店各卖出了多少个包包 第一种方法 继承Thread类: p ...

  6. 转-使用wifi调试程序

    转自:http://www.cnblogs.com/sunzhenxing19860608/archive/2011/07/14/2106492.html 数据线丢了,不想花钱去买,在网上看了看,an ...

  7. 为什么rand和srand总是同时出现?

    如果没有srand,那么rand在我电脑上运行每次返回的随机数是一样的.如果如果先调用srand,而且srand的参数不一样,那么最后产生的随机数就会不一样?那怎么然srand的参数是不一样的呢? 是 ...

  8. 数据库 MySQL 之 数据操作

    数据库 MySQL 之 数据操作 一.MySQL数据类型介绍 MySQL支持多种类型,大致可以分为四类:数值.字符串类型.日期/时间和其他类型. ①二进制类型 bit[(M)] 二进制位(101001 ...

  9. Linux安装tomcat服务器

    1.下载tomcat(区分windows和Linux,以tar.gz为后缀名的是Linux操作系统使用的). 官网下载地址:http://test.m.xiaoyuanhao.com/micro/ap ...

  10. LinkedHashMap原理以及场景

    http://www.cnblogs.com/xiaoxi/p/6170590.html