强连通分量算法-codevs1332
解决有向图的强连通分量的算法,有两个,一个是tarjan,一个是kosaraju,上午只看了一下kosaraju,不算太难,理解之后写了个模板题。
先说kosaraju算法,算法的主要思路是进行两次dfs,一次是正向边,一次是反向边,在时间复杂度O(V+E)之下便可统计出有多少个强连通分量以及每个点所属的强连通分量编号。
下面说一次具体实现过程及正确性,假设一副有向图G,他一定是由若干个强连通分量所构成的,这些强连通分量之间可以有边连接,但是边的方向一定是相同的,否则这两个连通分量可以合并为一个强连通分量。我们将每个scc看作一个点的话,图G就转化为了一个DAG。我们在第一次正向dfs时候对点进行逆序标记,这样的话标号最大的点一定位于这个DAG的起点,接下来将边反向,对于scc内部的点显然没影响,只是DAG的方向变了,此时从标号大的点开始搜索,能一次访问到的点一定位于同一个scc!至此算法结束。

1332 上白泽慧音
在幻想乡,上白泽慧音是以知识渊博闻名的老师。春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄。因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点。人间之里由N个村庄(编号为1..N)和M条道路组成,道路分为两种一种为单向通行的,一种为双向通行的,分别用1和2来标记。如果存在由村庄A到达村庄B的通路,那么我们认为可以从村庄A到达村庄B,记为(A,B)。当(A,B)和(B,A)同时满足时,我们认为A,B是绝对连通的,记为<A,B>。绝对连通区域是指一个村庄的集合,在这个集合中任意两个村庄X,Y都满足<X,Y>。现在你的任务是,找出最大的绝对连通区域,并将这个绝对连通区域的村庄按编号依次输出。若存在两个最大的,输出字典序最小的,比如当存在1,3,4和2,5,6这两个最大连通区域时,输出的是1,3,4。
第1行:两个正整数N,M
第2..M+1行:每行三个正整数a,b,t, t = 1表示存在从村庄a到b的单向道路,t = 2表示村庄a,b之间存在双向通行的道路。保证每条道路只出现一次。
第1行: 1个整数,表示最大的绝对连通区域包含的村庄个数。
第2行:若干个整数,依次输出最大的绝对连通区域所包含的村庄编号。
5 5
1 2 1
1 3 2
2 4 2
5 1 2
3 5 1
3
1 3 5
对于60%的数据:N <= 200且M <= 10,000
对于100%的数据:N <= 5,000且M <= 50,000
分类标签 Tags 点此展开
#include<bits/stdc++.h>
using namespace std;
struct Edge
{
int v,next;
}e1[],e2[];
int first1[],first2[];
int tot1,tot2;
bool vis[];
int f[];
int tot[];
vector<int>vi;
void add1(int u,int v){
e1[tot1].v=v;
e1[tot1].next=first1[u];
first1[u]=tot1++;
}
void add2(int u,int v){
e2[tot2].v=v;
e2[tot2].next=first2[u];
first2[u]=tot2++;
}
void dfs1(int u){
vis[u]=;
for(int i=first1[u];~i;i=e1[i].next){
int v=e1[i].v;
if(vis[v]) continue;
dfs1(v);
}
vi.push_back(u);
}
int dfs2(int u,int k){
vis[u]=;
f[u]=k;
int s=;
for(int i=first2[u];~i;i=e2[i].next){
int v=e2[i].v;
if(vis[v]) continue;
s+=dfs2(v,k);
}
return s;
} int main()
{
int N,M,i,j,k,u,v,t,w;
while(cin>>N>>M){
vi.clear();
memset(first1,-,sizeof(first1));
memset(first2,-,sizeof(first2));
memset(vis,,sizeof(vis));
memset(tot,,sizeof(tot));
tot1=tot2=;
for(i=;i<=M;++i){
scanf("%d%d%d",&u,&v,&t);
add1(u,v);
add2(v,u);
if(t==){
add1(v,u);
add2(u,v);
}
}
for(i=;i<=N;++i){
if(!vis[i]) dfs1(i);
}
memset(vis,,sizeof(vis));
k=;
int maxk=;
for(i=N-;i>=;--i){
if(!vis[vi[i]]) maxk=max(maxk,dfs2(vi[i],++k));
}
cout<<maxk<<endl;
for(i=;i<=N;++i) tot[f[i]]++;
for(i=;i<=N;++i){
if(maxk==tot[f[i]]) {maxk=f[i];break;}
}
for(i=;i<=N;++i){
if(f[i]==maxk){
cout<<i;
break;
}
}
i++;
for(;i<=N;++i){
if(f[i]==maxk)
printf(" %d",i);
}
puts("");
}
return ;
}
强连通分量算法-codevs1332的更多相关文章
- 强连通分量算法·$tarjan$初探
嗯,今天好不容易把鸽了好久的缩点给弄完了--感觉好像--很简单? 算法的目的,其实就是在有向图上,把一个强连通分量缩成一个点--然后我们再对此搞搞事情,\(over\) 哦对,时间复杂度很显然是\(\ ...
- Tarjan的强连通分量算法
Tarjan算法用于寻找图G(V,E)中的所有强连通分量,其时间复杂度为O(|V|+|E|). 所谓强连通分量就是V的某个极大子集,其中任意两个结点u,v在图中都存在一条从u到v的路径. Tarjan ...
- 图之强连通、强连通图、强连通分量 Tarjan算法
原文地址:https://blog.csdn.net/qq_16234613/article/details/77431043 一.解释 在有向图G中,如果两个顶点间至少存在一条互相可达路径,称两个顶 ...
- 有向图强连通分量Tarjan算法
在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...
- Tarjan算法分解强连通分量(附详细参考文章)
Tarjan算法分解强连通分量 算法思路: 算法通过dfs遍历整个连通分量,并在遍历过程中给每个点打上两个记号:一个是时间戳,即首次访问到节点i的时刻,另一个是节点u的某一个祖先被访问的最早时刻. 时 ...
- 模板 - 图论 - 强连通分量 - Kosaraju算法
这个算法是自己实现的Kosaraju算法,附带一个缩点,其实缩点这个跟Kosaraju算法没有什么关系,应该其他的强连通分量算法计算出每个点所属的强连通分量之后也可以这样缩点. 算法复杂度: Kosa ...
- 浅析强连通分量(Tarjan和kosaraju)
理解 在有向图G中,如果两点互相可达,则称这两个点强连通,如果G中任意两点互相可达,则称G是强连通图. 定理: 1.一个有向图是强连通的,当且仅当G中有一个回路,它至少包含每个节点一次. ...
- tarjan 强连通分量
一.强连通分量定义 有向图强连通分量在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly c ...
- poj 2762 Going from u to v or from v to u?【强连通分量缩点+拓扑排序】
Going from u to v or from v to u? Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15812 ...
随机推荐
- HMM、MEMM、CRF模型比较和标注偏置问题(Label Bias Problem)
本文转自:http://www.cnblogs.com/syx-1987/p/4077325.html 路径1-1-1-1的概率:0.4*0.45*0.5=0.09 路径2-2-2-2的概率:0.01 ...
- SQL Server 数据分页查询
最近学习了一下SQL的分页查询,总结了以下几种方法. 首先建立了一个表,随意插入的一些测试数据,表结构和数据如下图: 现在假设我们要做的是每页5条数据,而现在我们要取第三页的数据.(数据太少,就每页5 ...
- Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals) B. The Meeting Place Cannot Be Changed
地址:http://codeforces.com/contest/782/problem/B 题目: B. The Meeting Place Cannot Be Changed time limit ...
- Divide by Zero 2017 and Codeforces Round #399 (Div. 1 + Div. 2, combined) C - Jon Snow and his Favourite Number
地址:http://codeforces.com/contest/768/problem/C 题目: C. Jon Snow and his Favourite Number time limit p ...
- TOSCA自动化测试工具--打开已存在的Projects
1.刚login账号的界面 2.找到左下角Browse,找到文件路径,选择文件,打开 3.展示已打开的project 4.这个页面上便可进行自己想要的操作 5.关闭projects,最下面状态栏进行有 ...
- NC二次开发常用的方法
//这张表存放的是所有单据模板的信息表 如果不知道单据模板的信息后可在数据库中查询PUB_BILLTEMPLET//这张表是打印模板的表改模板可以再此表修改pub_print_template//获取 ...
- springCloud3---ribbon
同一份代码,改变端口,就可以启动多个同名但是端口不一样的微服务. 客户端通过nginx来调用后面的多个用户微服务来实现负载均衡,这是服务端负载均衡. 客户端有一个组件,可以知道当前有几个用户微服务的i ...
- python计算纪念日相关
注意需要python3 1.距离某一特定日期多少天后,如 100天 from datetime import datetime,timedelta pre=datetime(2016,12,12,22 ...
- C++利用系统时间产生的随机数
本文由青松原创并依GPL-V2及其后续版本发放,转载请注明出处且应包含本行声明. C++中常用rand()函数生成随机数,但严格意义上来讲生成的只是伪随机数(pseudo-random integra ...
- MR案例:定制InputFormat
数据输入格式 InputFormat类用于描述MR作业的输入规范,主要功能:输入规范检查(比如输入文件目录的检查).对数据文件进行输入切分和从输入分块中将数据记录逐一读取出来.并转化为Map的输入键值 ...