Matrix Power Series

时间限制:1000 ms  |  内存限制:65535 KB
难度:4
 
描述
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
 
输入
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 10^9) and m (m < 10^4). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
输出
Output the elements of S modulo m in the same way as A is given.
样例输入
2 2 4
0 1
1 1
样例输出
1 2
2 3
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = ;
const int moder = ; const int N=;
int c[N][N],a[N][N],b[N][N],n,mo;
void mult(int x[N][N],int y[N][N])//x = x*y
{
int i,j,k;
for (i=;i<=n;i++)
for (j=;j<=n;j++)
{
c[i][j]=;
for (k=;k<=n;k++) c[i][j]=(c[i][j]+x[i][k]*y[k][j])%mo;
}
for (i=;i<=n;i++)
for (j=;j<=n;j++) x[i][j]=c[i][j];
} int main()
{
int m,i,j;
scanf("%d%d%d",&n,&m,&mo);
for (i=;i<=n;i++)
{
for (j=;j<=n;j++) scanf("%d",&a[i][j]);
a[i][i+n]=a[i+n][i+n]=b[i][i]=b[i+n][i+n]=; //b单位矩阵,a为所求的基础矩阵
}
n*=;
m++;
while(m>)
{
if (m%) mult(b,a);
m/=;
mult(a,a);
}
n/=;
for (i=;i<=n;i++) b[i][i+n]--;
for (i=;i<=n;i++)
{
for (j=;j<n;j++) printf("%d ",b[i][j+n]);
printf("%d\n",b[i][j+n]);
}
return ;
}

网上看了许多快速幂的写法,感觉都很麻烦,只有这个写的很通俗易懂

但题目要求的是 A+A2+...+Ak,而不是单个矩阵的幂

  那么我们可以构造一个分块的辅助矩阵 S,其中 A 为原矩阵,E 为单位矩阵,O 为0矩阵

  

  我们将 S 取幂,会发现一个特性

  

  S右上角那一块不正是我们要求的 A+A2+...+A吗?

  于是我们构造出 S 矩阵,然后对它求矩阵快速幂即可,最后别忘了减去一个单位阵

转自 https://www.cnblogs.com/hadilo/p/5903514.html

nyoj299——如何优雅的写矩阵快速幂的更多相关文章

  1. HDU 5607 graph 矩阵快速幂 + 快速幂

    这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...

  2. 矩阵快速幂--51nod-1242斐波那契数列的第N项

    斐波那契额数列的第N项 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, ...

  3. POJ_Fibonacci POJ_3070(矩阵快速幂入门题,附上自己写的矩阵模板)

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10521   Accepted: 7477 Descri ...

  4. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  5. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  6. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  7. HDU 2855 斐波那契+矩阵快速幂

    http://acm.hdu.edu.cn/showproblem.php?pid=2855 化简这个公式,多写出几组就会发现规律 d[n]=F[2*n] 后面的任务就是矩阵快速幂拍一个斐波那契模板出 ...

  8. HDU 4471 矩阵快速幂 Homework

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...

  9. 2014 Super Training #10 G Nostop --矩阵快速幂

    原题: FZU 2173 http://acm.fzu.edu.cn/problem.php?pid=2173 一开始看到这个题毫无头绪,根本没想到是矩阵快速幂,其实看见k那么大,就应该想到用快速幂什 ...

随机推荐

  1. HTML5游戏开发系列教程8(译)

    原文地址:http://www.script-tutorials.com/html5-game-development-lesson-8/ 这是我们最新一篇HTML5游戏开发系列文章.我们将继续使用c ...

  2. ViewFlipper

    main.xml <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xml ...

  3. Codeforces Round #430 (Div. 2) C. Ilya And The Tree

    地址:http://codeforces.com/contest/842/problem/C 题目: C. Ilya And The Tree time limit per test 2 second ...

  4. HDU - 5909 Tree Cutting (树形dp+FWT优化)

    题意:树上每个节点有权值,定义一棵树的权值为所有节点权值异或的值.求一棵树中,连通子树值为[0,m)的个数. 分析: 设\(dp[i][j]\)为根为i,值为j的子树的个数. 则\(dp[i][j\o ...

  5. Java堆内存设置

    转自:https://blog.csdn.net/Qiuzhongweiwei/article/details/81023645 堆内存设置 原理 JVM堆内存分为2块:永久空间和堆空间. 永久即持久 ...

  6. Jmeter中解决中文乱码问题

    在使用JMeter过程中,执行结果响应断言总是提示失败,但是使用英文字母可以成功,表示逻辑和其它地方没有问题,问题可能出在编码上,细看了响应数据和日志,其中中文参数被编码成了类似URL编码格式,如下图 ...

  7. laravel 环境配置

    一.composer 安装 1.确定为最新版本的PHP 2.进入Composer官网下载页面,在页面最下方Manual Download区域选择需要的版本下载. 3.将下载的composer.phar ...

  8. C/C++结构体语法总结

    转自:http://blog.csdn.net/dawn_after_dark/article/details/73555562 结构体简介 结构体属于聚合数据类型的一类,它将不同的数据类型整合在一起 ...

  9. JQuery的click、bind、delegate、off、unbind

    .click与.bind .click和.bind都是给每个元素绑定事件,对于只绑定一个click事件,.bind事件的简写就是.click那种方式. 这两种方式都会出现两个问题: 第一个问题,如果要 ...

  10. APP开放接口API安全性——Token令牌Sign签名的设计与实现

    在APP开放接口API的设计中,避免不了的就是安全性问题. 一.https协议 对于一些敏感的API接口,需要使用https协议.https是在http超文本传输协议加入SSL层,它在网络间通信是加密 ...